
Predicting At-Risk Novice Java Programmers

Through the Analysis of Online Protocols

Emily S. Tabanao
Department of Information

Technology
MSU-Iligan Institute of Technology

Iligan City, Philippines

emily.tabanao@g.msuiit.edu.ph

Ma. Mercedes T. Rodrigo
Department of Information

Systems and
Computer Science

Ateneo de Manila University
Quezon City, Philippines

mrodrigo@ateneo.edu

Matthew C. Jadud
Department of Computer Science

Allegheny College
Meadville, PA, USA

matthew.c@jadud.com

ABSTRACT
In this study, we attempted to quantify indicators of novice

programmer progress in the task of writing programs,and we

evaluated the use of these indicators for identifying academically

at-risk students. Over the course of nine weeks, students

completed five different graded programming exercises in a

computer lab. Using an instrumented version of BlueJ, an

integrated development environment for Java, we collected novice

compilations and explored the errors novices encountered, the

locations of these errors, and the frequency with which novices

compiled their programs.We identified which frequently

encountered errors and which compilation behaviorswere

characteristic of at-risk students. Based on these findings, we

developed linear regression models that allowed prediction of

students’ scores on a midterm exam. However, the models

derived could not accurately predict the at-risk students. Although

our goal of identifying at-risk students was not attained, we have

gained insightsregarding the compilation behavior of our students,

which may help us identify students who are in need of

intervention.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:

Computer Science Education

General Terms
Human Factors

Keywords
Novice Programmers, Achievement, Compilation Behavior, Java

programming, CS1

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

ICER’11, August 8–9, 2011, Providence, Rhode Island, USA.

Copyright 2011 ACM 978-1-4503-0829-8/11/08...$10.00.

1. INTRODUCTION
Learning to program is hard. In a study conducted by McCracken

et al., researchers found that as many as 35% of students fail their

first programming course, while in the United Kingdom and the

United States approximately 30% of computer science students

did not understand programming basics [18]. This has led to a

growing concern among computer science educators over the lack

of programming comprehension of first-year computer science

students.

Novice computer programmers are of special interest to the

computer science education community. Computer science

education researchers have conducted investigations into the kinds

of problems novice programmers encounter when learning to

program. Novices’ knowledge has been found to be limited and

shallow, hence they struggle with writing syntactically-correct

programs [18]. They typically lack detailed mental models of

various programming constructs [4,9], and tendto organize

knowledge based on superficial similarities. Novices use general

problem solving strategies instead of problem specific or program

specific strategies, and approachprogramming "line by line" rather

than at the level of meaningful program structures [21,25].

Novices have been observed to have poor program comprehension

as evidenced by activities involving the tracing of their code [19].

They had a poor grasp at how a program executes and have

problems with understanding that each instruction is executed in

the state that has been created by the previous instructions [1].

Over the years, computer science educators and researchers have

also conducted studies to identify the causes of these problems

and to find possible solutions. One such method used is the

collection and analysis of online protocols, which typically

involve gathering information by augmenting the programming

environments students use to write, compile and test their

programs, thus allowing for automated data collection and

subsequent analysis. In this study, we collect students’

interactions with the Java compiler (mediated by the BlueJ IDE),

which include the error message, the line number where the error

appeared, the source code, and the time the compilation occurred.

The goal of this study was to determine whether at-risk novice

Java programmers can be accurately identified through the

analysis of online protocols. We quantified the compilation

behavior of the students by computing what Jadud calls the Error

Quotient (Section 2.1) [14]. We also derived the errors

encountered and time between compilations from the data logs.

From this, we built a linear regression model based on the EQ,

errors encountered and time between compilations and the

students’ achievement in class as represented by students’

midterm exam scores.

This present study has several potential benefits to educators

teaching programming. Identifying at-risk students early in the

semester can help educators provide targeted help and proper

intervention to those who need it the most. By knowing the errors

students typically incur in their programming, educators can better

address concepts that students find difficult to grasp or are having

misconceptions about. The EQ score can tell who among the

students are struggling with syntax errors, prompting teachers to

intervene to mitigate frustration. Spotting at-risk students early

may also help reduce the dropout rates in computer science

classes.

1.1 Research questions
 From the online protocols of our students, we ask the following

questions:
1. How do students with different achievement levels differ in

terms of:
a. Error profiles?
b. Average time between compilation profiles?
c. EQ profiles?

2. What factors predict the students’ midterm scores?

2. REVIEW OF RELATED LITERATURE
Many studies have been conducted that identified factors related

to success in the learning of programming. Among the identified

student characteristics that may contribute to student success in

introductory programming courses are prior programming

experience, gender, secondary school performance and dislike of

programming, intrinsic motivation and comfort level, high school

mathematics background, attribution to luck for success/failure,

formal training in programming, and perceived understanding of

the material [5, 11, 12, 24].

Other studies have investigated teaching and learning approaches

in relation to success in learning programming. Byckling and

Sajaniemi developed the concept of roles of variables and a

visualization tool to support the concept. Initial experiments with

the visualization of variable roles helped novices in their learning

of programming [7]. A subsequent experiment that tested the tool

showed that visualization significantly improved the debugging

skill of the students [2].

Mayer stated that mental models are crucial to learning and

understanding programming [8]. To this end, Dehnadi designed an

instrument to reveal the learners' mental models regarding

assignment of values to variables and to evaluate the consistency

and viability of those mental models. He believed that consistency

of mental model is more important than viability of the model.

That is, if the learner believes there is one and only one rule that

applies, and consistently applies that rule, then the consistent

application of the rule can have a strong effect on success in early

learning of programming [8]. However, after several experiments

the instrument failed to accurately deliver expected results [6].

It is generally accepted that programming is not easy. When

novices were interviewed about their experience while performing

their programming assignments, students clearly recalled

emotional experiences and reactions. One of the most harmful of

these emotions is frustration [16]. Some students learned from the

bugs they encounter in their programs, but others get frustrated

every time they encounter a problem and tend to view bugs as a

measure of their performance. Labeled by Perkins as stoppers,

these students have a tendency to get discouraged by their

mistakes and give up [19]. Recently, Rodrigo & Baker was able

to build a model that predicted frustration from the online

protocols of the students [22]. In another study, Rodrigo et al.

found confusion, boredom and IDE-related on-task conversation

had negative effect on achievement in an intro to programming

course [23].

Other attitude and behavior that were found to have positive effect

on achievement in early programming course are perfectionism

and self-esteem, and high states of arousal or delight [15].

Negative attitude such as disliking programming was found to be

associated with lower success in early programming courses [3].

2.1 Error Quotient
In an attempt to represent student compilation behavior as a single

scalar quantity, Jadud developed the Error Quotient (EQ). EQ is a

function of error type, location, and proximity in time relative to

other errors. It was intended as an indicator of how well or poorly

a student was progressing.

Every record in the online protocol represents one compilation

event. Stored in each record is the error message (if there was an

error at the time of compilation), the location (line number) of the

error in the file, and the source code. To compute the EQ, we

examine the error message, the line number and the text of the

source code. Given two compilation events, we first check

whether both compilations ended in error. If they did, we assign a

penalty. We then compare the error messages encountered. If

they are the same, another penalty is imposed. If the errors

occurred on the same line numbers, a third penalty is imposed.

Finally, the programmer incurs a fourth penalty if the edit location

of the source code on both events are the same. The penalties are

normalized and averaged across all pairs of compilations to arrive

at the final EQ score of the session.

An EQ score ranges from 0 to 1.0, where 0 is a perfect score. An

EQ score of 0 means that at no point did the student encounter

errors in consecutive compilations. A score of 1.0 means that

every compilation resulted to the same syntax error in the same

location.

3. METHODOLOGY
This study was conducted in the Department of Information

Systems and Computer Science (DISCS) of the Ateneo de Manila

University on the First Semester of School Year 2007-2008. The

course CS21A - Introduction to Computing I (CS1 in the

literature) is the first computer programming course offered by the

department to students studying Computer Science or

Management Information System, and it is a required course for

students in both degree programs. The Computer Science students

take the course during their first year in the program, while the

MIS students take it during their second year. It is presumed that

students taking the course do not have prior knowledge of

programming, but it is expected that they know basic operations

of how to use a computer.

The participants of this study were the students enrolled in CS21A

on the first semester of 2007-2008 at the Ateneo de Manila

University. Of the 143 subjects participating, 35% were female

and 65% were male; 18% were students in the Computer Science

program, and 82% were students in Management Information

Systems.

On the first day of classes students were informed about the study.

A consent letter was given to each of the students. Each student

affixed their signature and the signature of their parent/guardian if

they were willing to be part of the study. They were not,

however, obliged to join the study.

The students perform laboratory exercises in the computing

laboratories that also served as lecture rooms. All the machines

were installed with the same operating system, Java standard

development kit, and BlueJ. The machines were connected to a

local area network and the Internet. The laboratories have one-to-

one student-to-computer ratios.

Over the first nine weeks of the semester, we scheduled five days

during which students performed laboratory exercises. The lab

exercises followed the lectures of the topics covered in the class

and were designed to be finished in a one hour laboratory session.

The exercises were given to the students on the day of their

scheduled laboratory. A driver program was also given in each

exercise for the students to test their code. Data gathering of the

compilation logs was completely automated. Data was gathered

only on the scheduled laboratory when the standard exercises

were given.

3.1 Tools for collecting data
The data gathering tool was implemented as an extension to the

BlueJ programming environment [14]. The focus of this study was

on the compilation activities of the students inside the BlueJ IDE.

A compilation event data was captured every time a student

clicked the Compile button. Compilation events were recorded

and stored in an SQlite database. Each record in the database

represents one compilation event. We only retained data for

students who consented to participate in the study.

3.2 Data pre-processing
Once the data had been gathered, it was pre-processed for

analysis. For each study participant, all compilation records not

related to the lab exercise were deleted. Students whose online

protocol records were incomplete because of absences or technical

problems were deleted from the dataset as well. After all the

deletions, the sample was reduced from 143 to 124 students; 79

were male and 45 were female.

4. RESULTS AND DISCUSSION
The tools that we used for data collection allowed us to capture a

copy of the students' work in progress every time they compiled

their code. Here we present the errors encountered, the time

between compilations, the computed Error Quotients, and linear

regression modeling results. Computed results for the entire five

lab sessions will be presented.

Using the midterm exam score, we categorized our students into

three groups to determine behaviors of different student

categories. Students who were one standard deviation below the

mean were called the AtRisk group. Those who were one standard

deviation above the mean were the HighPerforming group and

those who were within one standard deviation from the mean are

the Average group. Twenty-three out of 124 students were in the

AtRisk group. They received a score of 62 or below. Twenty-five

out of 124 students were in the HighPerforming group. They

received scores of 89 and above. The Average group was

composed of 76 students.

For each student, we extracted the timestamps, the errors

encountered if there were any together with the line number and

the contents of the file compiled. We computed the average time

between compilations, total compilations, the EQ and the sum of

all errors encountered for the five lab sessions. We also made a

tally of the frequency of compilations per ten second bins and the

top ten errors encountered.

A total of 24,151 compilation events were collected during the

five laboratory sessions, 14,470 of these events or 60% ended in

error. Table 1 shows the breakdown of these compilation events

among the three student groups. Notice that the AtRisk group

incurred the highest percentage of errors among the three groups

even if they only made up 19% of our participants.

Table 1. Total Compilation Events per student group

Student Group
Total

Compila-

tion

Events

Events

with

Errors

Percentage of

events with

errors

AtRisk 4,822 3,169 66%
Average 15,720 9,532 61%
HighPerforming 3,609 1,769 49%
Total 24,151 14,470 60%

4.1.a. Do different groups of students have

different error profiles?

Using the total error events, we compared the groups using a one-

way ANOVA to determine whether there were significant

differences between the groups in terms of the errors they

encountered. When the F test was significant, we proceeded with

post-hoc analysis using Tukey HSD to check which among the

groups had significant differences.

There was a significant difference among groups on the Total

Errors, F(2,121)=8.97, p<.001. Post-hoc test results showed that

the HighPerforming group had a significant lower number of

errors encountered from the AtRisk group at p < .001. The

HighPerforming group also had a significant lower number of

errors compared to the Average group at p < .01, and the Average

group was not significantly different from the AtRisk group.

Post-hoc test results also revealed that students in the AtRisk

group encountered the most errors among the three groups.

We were also interested to know what kinds of compilation errors

each group encountered most frequently. We disaggregated the

total errors into the top ten errors incurred by all the subjects.

Figure 1 shows the top ten errors encountered over five lab

sessions broken down by group.

We then performed a one-way ANOVA on each error type to

determine whether the incidence of these errors among the

different groups were significantly different. For the errors where

significant differences were found, another post-hoc test was

performed. ANOVA revealed five errors where significant

differences between the three groups were found.

Figure 1. Top Ten Errors over Five Lab Sessions

broken down by Student Group

Table 2 shows the results of the post-hoc test on these errors.

Table 2. Tukey HSD test on Error Types

with Significant F test at 95% confidence interval

Error Type Groups Compared p adj
cannot find

symbol-variable
Average-AtRisk 0.02
HighPerforming-AtRisk 0.00
HighPerforming-Average 0.01

incompatible

types
Average-AtRisk 0.91
HighPerforming-AtRisk 0.08
HighPerforming-Average 0.06

identifier

expected
Average-AtRisk 0.33
HighPerforming-AtRisk 0.00
HighPerforming-Average 0.01

class,

interface, or

enum expected

Average-AtRisk 0.00
HighPerforming-AtRisk 0.00
HighPerforming-Average 0.70

cannot find

symbol-class
Average-AtRisk 0.68
HighPerforming-AtRisk 0.04
HighPerforming-Average 0.09

Table 2 shows that:

1. the HighPerforming group was significantly different from

the AtRisk group on only four errors: cannot find
symbol-variable, identifier expected,

class, interface, or enum expected, and

cannot find symbol-class errors. The mean

differences show that the HighPerforming group encountered

fewer instances of these errors compared to the AtRisk

group;

2. the HighPerforming group was significantly different from

the Average group on only two errors the cannot find

symbol-variable and identifier expected

errors. The HighPerforming group encountered fewer

instances of these two errors as compared to the Average

group; and
3. the Average group was significantly different from the

AtRisk group on only two errors the cannot find

symbol-variable and class, interface, or

enum expected errors. The AtRisk group

encountered more instances of these two errors when

compared with the Average group.

4.1.b. Do different groups have different average

time between compilations profiles?
Every time students compiled their code, our data collection

program recorded a timestamp, the time the event happened.

Timestamps were precise up to the millisecond level. We did not

attempt to categorize students based on the precise time between

compilations—this level of granularity was too fine-grained for

our purposes. Instead, as in Jadud’s study [13], we arranged the

time between compilations into 10 second bins and performed a

one-way ANOVA on the three student groups to determine if

there were differences in their compilation behavior in terms of

how rapidly they compiled their programs. Figure 2 shows a

comparison of the compilation of the groups of students.

Figure 2. Time between compilations over Five Lab Sessions

broken by Student Group

Table 3 summarizes the time interval in seconds at which there

was a significant difference among the three student groups.

Further analysis using Tukey HSD was performed and results are

also shown in Table 3, from which we can see that:

1. there was no significant difference between the Average and

AtRisk group in terms of time between compilations;
2. there was a significant difference between the

HighPerforming and the Average group except on the time

intervals 21-30, 111-120 and >120 seconds. The

HighPerforming group performed fewer compilations in all

time intervals compared to the Average group; and
3. the HighPerforming group was significantly different from

the AtRisk group except on the time interval 81-90 seconds.

0%

5%

10%

15%

20%

25%

Fr
e

q
u

e
n

cy

Error Type

AtRisk Average High Performing

0%

5%

10%

15%

20%

25%

30%

35%

40%

C
o

m
p

ila
ti

o
n

s

Time interval (seconds)

Atrisk Average HighPerforming

The AtRisk group performed more compilations in all time

intervals compared to the HighPerforming group.
Table 3. Tukey HSD test on time intervals with significant F

test at 95% confidence interval

Time interval

(seconds)

Groups Compared p adj

1-10 Average-AtRisk 0.71
HighPerforming-AtRisk 0.04
HighPerforming-Average 0.05

11-20 Average-AtRisk 0.25
HighPerforming-AtRisk 0.00
HighPerforming-Average 0.01

21-30 Average-AtRisk 0.35
HighPerforming-AtRisk 0.01
HighPerforming-Average 0.06

31-40 Average-AtRisk 0.53
HighPerforming-AtRisk 0.00
HighPerforming-Average 0.01

61-70 Average-AtRisk 0.66
HighPerforming-AtRisk 0.02
HighPerforming-Average 0.04

81-90 Average-AtRisk 0.81
HighPerforming-AtRisk 0.31
HighPerforming-Average 0.04

111-120 Average-AtRisk 0.53
HighPerforming-AtRisk 0.02
HighPerforming-Average 0.10

>120 Average-AtRisk 0.21
HighPerforming-AtRisk 0.01
HighPerforming-Average 0.10

These results suggest that we cannot differentiate an Average

from an AtRisk student based on the timing of when they click the

compile button. The HighPerforming group, on the other hand,

can always be differentiated from the Average and the AtRisk

groups. Though there is one time interval where the

HighPerforming group is not significantly different from the

AtRisk group, particularly the 81-90 seconds interval, overall, the

difference is significant at p <.05. There is a need to further

examine the data to check what the AtRisk group was doing

exactly. We suspected they could be doing something not related

to the assignment or maybe they seemed lost or got stuck and did

not know what to do as uncovered by the study of [16]. It is

possible that although the AtRisk group spends a significant

amount of time between compilations, the time between

compilations is not spent productively.

4.1.c. Do different groups of students have

different EQ Profiles?
We took the average Error Quotient (EQ) of the students for the

five lab sessions and used as our data for this analysis. We wanted

to see how different the EQ scores were of the three student

groups. Figure 3 shows the EQ scores and percentage distribution

among our participants.

Result of one-way ANOVA showed that there was a significant

difference in the EQ scores among the groups, F(2,121) = 20.528,

p < .001. After performing post-hoc analysis, we found that the

Average group is significantly different from the AtRisk group at

Figure 3. EQ Score distribution by Group

p< .001 and the mean difference show that the AtRisk group have

higher EQs compared to the Average group. The HighPerforming

group was significantly different from the Average group at p<.01

and the mean difference show that the HighPerforming group

have lower EQs compared to the Average group. The AtRisk

group was significantly different from the HighPerforming group

at p<.001 and the mean difference show that the AtRisk group had

higher EQs compared to the HighPerforming group (Table 4).

Table 4. Tukey HSD test on EQ at 95% confidence interval

Groups Compared Mean difference p adj
Average-AtRisk -0.11 0.00
HighPerforming-AtRisk -0.19 0.00
HighPerforming-Average -0.08 0.00

4.2. What factors predict the midterm score?
In this part of our data analysis, we first correlated the Total

Errors encountered and average time between compilations with

the Midterm Score. It was important to get a correlation from

these variables first in order to see if there was any relationship

between them. If there was no relationship existed between them,

linear regression would fail.Pearson's product-moment correlation

showed the following results:

1. there was a significant negative relationship between the total

errors encountered and the Midterm Score, r = -.41, p<.001;
2. there was a significant positive relationship between average

time between compilations and the Midterm Score, r = .27,

p< .01; and
3. there was a significant negative relationship between EQ and

the Midterm Score, r= -.55, p <.001.

Results revealed that there was a correlation between the errors

encountered, average time between compilations and the Error

Quotient. We then proceeded with performing linear regression to

determine whether any of these were predictors of achievement as

represented by the students’ scores on the midterm exam.To test

the generalizability of our models we also computed each model’s

Bayesian Information Criterion for Linear Regression (BiC’). The

BiC’ is used to assess the tradeoff between model fit and the

number of parameters (which can spuriously increase model fit).

Values of BiC’ less than -6 signify that the model has

significantly better fit than chance, given the number of model

parameters [20].

0%

10%

20%

30%

40%

50%

60%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ar

ti
ci

p
an

ts

EQ Score

AtRisk Average HighPerforming

4.2.a. Predicting midterm score using the errors

encountered
Using the Total Errors encountered from the five lab sessions and

the Midterm Score we arrived at the following model:

Model 1: MidtermScore = 84.29698 - 0.07304*TotalErrors

Multiple R2=0.1457, Adjusted R2=0.1387
F(1,122)=20.81, p-value<.001, BIC = -7.8

Model 1 accounted for only 13.87% of the variance of the

Midterm score. From the intercept of Model 1, we concluded that

the model could not predict the HighPerforming group. However,

this could also mean that the errors encountered by the

HighPerforming group of students did not affect their

MidtermScore.

We performed multiple regression by inputting the top ten errors

into our modeling tool. Only three out of the ten errors were

significant as seen in Model 2.

Model 2:

MidtermScore = 83.50274-0.25632*UNKNOWN_VARIABLE

- 0.42035*CLASS_INTERFACE_EXP
 - 0.75506*UNKNOWN_CLASS

Multiple R2=0.2645, Adjusted R2=0.1994,F(10,113)=4.063, p-

value<.001, BiC’=-10.2635

Model 2 seemed to apply only to the Average and the AtRisk

groups. It could not predict HighPerforming students but it is

much better compared to Model 1 in terms of predicting the

AtRisk students.

From the results in Section 4.1.a, we found that among the top 10

errors, there were only five errors where the three groups had

significant differences. And out of the five, three came out in

Model 2 that significantly affects the Midterm Score. As added

information and to help us further understand Model 2, we

generated the means of the error types per group. Table 5 shows

the computed means.

Table 5. Group mean values on error types

Error Type
Mean Values

High-

Performing
Ave-

rage
AtRisk

cannot find symbol –

variable
12.0 23.3 33.6

incompatible types 1.3 5.6 6.3
identifier expected 1.9 4.2 5.6
class, interface, or

enum expected
0.8 2.2 7.8

cannot find symbol-

class
1.1 2.7 3.3

Table 5 shows that the HighPerforming group incurred the least

number of errors, which implies that the HighPerforming group’s

Midterm Score was not affected by the errors they encountered.

However, the Midterm Scores of the students in the Average and

AtRisk group may be negatively affected by the following

errors: cannot find symbol–variable, class,

interface, or enum expected and cannot find

symbol-class. Model 2 indicates that the more cannot

find symbol – variable, class, interface, or

enum expected and cannot find symbol-class

errors the AtRisk and Average group encounters, the lower their

midterm scores will be. Also, we could notice in Table 5 that the

AtRisk and Average groups had closer means and were higher

compared to the HighPerforming group.

4.2.b. Predicting the midterm score using Time

between compilations
To determine if time between compilations was a good predictor

of the Midterm score, we took the mean of the average time

between compilations of the five lab sessions and came up with

Model 3.

Model 3: MidtermScore = 65.04788

+ 0.12107*AverageTBC_seconds

Multiple R2=0.07272, Adjusted R2=0.06512
F(1,122)=9.568, p-value<.01, BIC = -1.97243

Model 3 suggests that average time between compilations had a

positive effect on the Midterm score. The longer the time

intervals between compilations, the higher the Midterm score will

be. Although this finding was intuitive, the model itself was quite

weak at an R2 value of .06 and with a BiC’ value of -1.97. When

we computed the predicted Midterm Scores the model was not

able to predict AtRisk students and all students were predicted to

belong to only one group.

4.2.c. Predicting midterm score using EQ scores
We computed the average EQ score for the five laboratory

sessions and together with the Midterm Score arrived at Model 4.

Model 4: MidtermScore = 92.918 - 64.396*EQ

Adjusted R2 = 0.2971, F(1,122) = 52.98,
p-value = 3.591e-11, BIC’ = -17.3303

In all the models that we have, Model 4 has the highest R2 value.

The BiC’ value suggests that the model has significantly better fit

than chance given the EQ parameter. Model 4 suggests that EQ

has a negative effect on the Midterm score. The higher the EQ, the

lower the Midterm Score will be.

We combined all factors in Models 1 to 4 to see if we can come

up with a better model. These factors are the errors

UNKNOWN_VARIABLE, CLASS_INTERFACE_EXP and

UNKNOWN_CLASS and the EQ. We arrived at Model 5. The EQ

came out to be a highly significant predictor of the Midterm score.

Model 5: MidtermScore = 90.58643-43.33380*EQ

Adjusted R2 = 0.3073, F(7,116)= 8.795,
p-value=1.202e-08, BIC’ = -20.8326

The UNKNOWN_VARIABLE error had p=.06, an indication to look

for in determining AtRisk students. We can see from Model 5

that the EQ accounted for about one-third of the variance of the

Midterm Score based on the adjusted R2 value. The BiC’ value

indicates that our model has a significantly better fit than chance

given the parameters.

5. CONCLUSION AND FUTURE WORK
In this paper, we attempted to determine whether there were

differences among groups of students in terms of their error

profiles, compilation profiles and Error Quotient profiles. We

also tried to determine whether any of these indicators could

predict the midterm scores. Based upon students’ online protocols

we found that errors encountered by novices in Java programming

can negatively affect their midterm score. We have shown that

High Performing novices encountered similar errors with the rest

of their peers. However, when compared against the Average and

AtRisk novices, High Performing novices encountered these

errors less frequently. The Average and AtRisk novices

encountered more errors, and these two groups differed

significantly on only three types out of the top ten errors. We

found that errors did not affect the Midterm Scores of the

HighPerforming novices but there were three types of error that

negatively affected the Midterm Scores of the Average and

AtRisk novices: cannot find symbol – variable,

class, interface, or enum expected and cannot

find symbol-class errors.

We also found that higher time between compilations yielded

positive effect on the Midterm Score. The average time between

compilations performed by the High Performing novices was

higher than those of the Average and the AtRisk novices. The

HighPerforming group spent more time on their programs and

wrote more lines of code compared to the other two groups.

There was a significantly high incidence of recompilations in less

than 30 seconds among the AtRisk and Average novices. The

compilation behavior of the two groups was the same.

We generated linear regression models that predicted the Midterm

Score of a student given the errors encountered, time between

compilation and the EQ across five lab sessions. The model with

EQ as a factor could significantly predict Midterm Scores better

than would-be-expected by chance. However, our models came

out to be poor at predicting AtRisk students.

From the significant findings of this study, we identify several

possible avenues for further investigation. We could use other

achievement indicators such the grade for lab exercise where data

were collected to strengthen our models. We can also improve on

the basis of grouping the students. Instead of just one group to

represent the average students, we can break them into high-

average and below-average students. We can use the standard

cut-off in the grading systems for A, B, C and D. We surmised

that high-average students had similar compilation behavior with

the high performing students and that below average and at-risk

students may have had similar behaviors as well.

The models derived from the errors encountered suggest that we

look out on students who struggle with errors. Additional

investigations can be undertaken to explore the conceptual errors

that generate these syntax errors. The differences in the types of

errors encountered by AtRisk and HighPerforming students, for

example, may say something about the students’ mental models

and where their understandings are flawed. Insight into these

flaws can help computer science educators design interventions to

correct these mental models.

Finally, we believe there is potential to use IDEs intelligent

systems that offer help or guidance to students or gives signal to

the teacher for provision of help to some students. Support

systems of this type may help mitigate student frustration and

confusion, increase programming comprehension, and raise

achievement. They may also contribute to greater student

retention in computer science and related disciplines.

In conclusion, this study has shed light on the differences of the

profiles of novice programmers. Using the compilation logs we

can spot who among the novices are performing well. Though we

have not successfully attained our goal of identifying at-risk

students, the study has given us clues on which compilation

behaviors at-risk students are exhibiting. Our suggestions on

improving the study might give us better models in the future.

6. ACKNOWLEDGMENTS
We thank Arvin Guingguing, Anna Christine Amarra, Ramil

Bataller, Andrei Coronel, Darlene Daig, Jose Alfredo de Vera,

Thomas Dy, Maria Beatriz Espejo-Lahoz, Dr. Emmanuel Lagare,

Sheryl Ann Lim, Ramon Francisco Mejia, Shiela Pascua, Dr. John

Paul Vergara, and the technical and secretarial staff of the Ateneo

de Manila’s Department of Information Systems and Computer

Science for their assistance with this project. We thank the Ateneo

de Manila’s CS21A students, school year 2007-2008, for their

participation. We thank the Department of Science and

Technology’s Philippine Council for Advanced Science and

Technology Research and Development for making this study

possible by providing the grants entitled Modeling Novice

Programmer Behaviors Through the Analysis of Logged Online

Protocols and Observation and Diagnosis of Novice Programmer

Skills and Behaviors Using Logged Online Protocols. Finally, Dr.

Rodrigo thanks the Philippine American Educational Foundation

and the Council for International Exchange of Scholars for her

2008-2009 Advanced Research and University Lecturing

Fulbright Scholarship.

7. REFERENCES
[1] Ahmadzadeh, M., Elliman, D. and Higgins, C. An analysis

of patterns of debugging among novice computer science

students. In Proceedings of the 10th annual SIGCSE

conference on Innovation and technology in computer

science education (ITiCSE '05). ACM, New York, NY, USA,

84-88. http://doi.acm.org/10.1145/1067445.1067472
[2] Al-Barakati, N., Al-Aama, A., 2009. The effect of

visualizing roles of variables on student performance in an

introductory programming course. SIGCSE Bull. 41, 3 (July

2009), 228-232.

http://doi.acm.org/10.1145/1595496.1562949
[3] Bennedsen, J., Caspersen M. E. 2008. Optimists Have More

Fun, But Do They Learn Better? - On the Influence of

Emotional and Social Factors on Learning Introductory

Computer Science. Computer Science Education, 18, 1, 1-16.
[4] Ben-Ari, M. 1998. Constructivism in computer science

education. ACM Press New York, NY, USA. Vol. 30(1).
[5] Bergin, S., Reilly R.: Programming: Factors that influence

success. SIGCSE 2005. Proceedings of the thirty-fifth

SIGCSE technical symposium on Computer Science

Education. St. Louis, Illinois, US. February 2005, 411-415.
[6] Bornat, R., Dehnadi, S., Simon. 2008. Mental models,

consistency and programming aptitude. In Proceedings of the

tenth conference on Australasian computing education -

Volume 78 (ACE '08), Simon Hamilton and Margaret

Hamilton (Eds.), Vol. 78. Australian Computer Society, Inc.,

Darlinghurst, Australia, Australia, 53-61.
[7] Byckling, P., Sajaniemi, J., 2006. Roles of variables and

programming skills improvement. SIGCSE Bull. 38, 1

(March 2006), 413-417. DOI=10.1145/1124706.1121470

http://doi.acm.org/10.1145/1124706.1121470

http://doi.acm.org/10.1145/1124706.1121470

[8] Dehnadi, Saeed. A Cognitive Study of Learning to Program

in Introductory Programming Courses [Doctoral Thesis].

Retrieved from

http://eprints.mdx.ac.uk/6274/1/Dehnadi_A_Cognitive_Stud

y_of_Learning.pdf
[9] duBoulay, B. 1986. Some difficulties of learning to program.

Journal of Educational Computing Research, Vol. 2, pp. 57--

73.
[10] Fenwick, J.B.Jr., Norris, C., Barry, F.E., Rountree,J.,

Spicer,C.J. and Cheek, S.D. 2009. Another look at the

behaviors of novice programmers. SIGCSE Bull. 41, 1

(March 2009), 296-300. DOI=10.1145/1539024.1508973

http://doi.acm.org/10.1145/1539024.1508973
[11] Goold, A. and Rimmer, R. (2000): Factors affecting

performance in first-year computing. ACM SIGCSE

Bulletin, 32(2): 39-43.
[12] Hagan, D., Markham, S., 2000. Does it help to have some

programming experience before beginning a computing

degree program?.SIGCSE Bull. 32, 3 (July 2000), 25-28.

http://doi.acm.org/10.1145/353519.343063
[13] Jadud MC. (2005). A first look at novice compilation

behavior using BlueJ. Computer Science Education, 15(1),

25-40.
[14] Jadud, M.C., 2006. Methods and tools for exploring novice

compilation behaviour. Proceedings of the 2006 international

workshop on Computing education research. New York, NY,

USA : ACM Press. pp. 73--84.
[15] Khan, I., Hierons, M., Brinkman, W. 2007. Mood

independent programming. In Proceedings of the 14th

European conference on Cognitive ergonomics: invent!

explore! (ECCE '07). ACM, New York, NY, USA, 269-272.

http://doi.acm.org/10.1145/1362550.1362606
[16] Kinnunen, P., Simon, B. 2010. Experiencing programming

assignments in CS1: the emotional toll. In Proceedings of the

Sixth international workshop on Computing education

research (ICER '10). ACM, New York, NY, USA, 77-86.

http://doi.acm.org/10.1145/1839594.1839609

[17] Lahtinen, E., Ala-Mutka, K. and Jarvinen, H.M. 2005. A

study of the difficulties of novice programmers. ACM Press.

ACM SIGCSE Bulletin. New York, NY, USA. Vol. 37(3),

pp. 14--18.
[18] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,

Hagan, D., Kolikant, Y.B., Laxer, C., Thomas, L., Utting, I.,

and Wilusz, T. 2001. A multi-national, multi-institutional

study of assessment of programming skills of first-year CS

students. In Working group reports from ITiCSE on

Innovation and technology in computer science education

(ITiCSE-WGR '01). ACM, New York, NY, USA, 125-180.

http://doi.acm.org/10.1145/572133.572137
[19] Perkins,D.N., Hancock, C., Hobbs, R., Martin, F. 1986.

Conditions of Learning in Novice Programmers. Journal of

Educational Computing Research, N. 1, Vol. 2, pp. p37--55.
[20] Raftery, A. E.. Bayesian model selection in social research.

Sociological Methodology, 25, 111-163, 2003.
[21] Robins, A., Rountree, J. &Rountree, N. 2003. Learning and

Teaching Programming: A Review and Discussion. Taylor &

Francis, Computer Science Education,13(2), pp. 137-172.
[22] Rodrigo, M.M.T., Baker, R. 2009. Coarse-grained detection

of student frustration in an introductory programming course.

In Proceedings of the fifth international workshop on

Computing education research workshop (ICER '09). ACM,

New York, NY, USA, 75-80.

http://doi.acm.org/10.1145/1584322.1584332
[23] Rodrigo,M.M.T., Baker R.S.J.d., Jadud, M.C., Amarra,

A.M., Dy, T., Lahoz,M.B.E., Lim, S.L., Pascua,S.A.M.S.,

Sugay, J.O., and Tabanao, E.S., 2009. Affective and

behavioral predictors of novice programmer achievement.

SIGCSE Bull. 41, 3 (July 2009), 156-160.

http://doi.acm.org/10.1145/1595496.1562929
[24] Wilson, B. (2002): A study of factors promoting success in

computer science including gender differences.Computer

Science Education, 12(1-2):141-164.
[25] Winslow, L.E. 1996. Programming pedagogy - A

psychological overview. SIGCSE Bulletin, 28(3), pp. 17-22.

http://eprints.mdx.ac.uk/6274/1/Dehnadi_A_Cognitive_Study_of_Learning.pdf
http://eprints.mdx.ac.uk/6274/1/Dehnadi_A_Cognitive_Study_of_Learning.pdf
http://doi.acm.org/10.1145/353519.343063
http://doi.acm.org/10.1145/1839594.1839609
http://doi.acm.org/10.1145/572133.572137
http://doi.acm.org/10.1145/1584322.1584332

