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ABSTRACT 
In this study, we attempted to quantify indicators of novice 

programmer progress in the task of writing programs,and we 

evaluated the use of these indicators for identifying academically 

at-risk students. Over the course of nine weeks, students 

completed five different graded programming exercises in a 

computer lab. Using an instrumented version of BlueJ, an 

integrated development environment for Java, we collected novice 

compilations and explored the errors novices encountered, the 

locations of these errors, and the frequency with which novices 

compiled their programs.We identified which frequently 

encountered errors and which compilation behaviorswere 

characteristic of at-risk students.   Based on these findings, we 

developed linear regression models that allowed prediction of 

students’ scores on a midterm exam.  However, the models 

derived could not accurately predict the at-risk students. Although 

our goal of identifying at-risk students was not attained, we have 

gained insightsregarding the compilation behavior of our students, 

which may help us identify students who are in need of 

intervention. 

Categories and Subject Descriptors 
K.3.2 [Computer and Information Science Education]: 

Computer Science Education 

General Terms 
Human Factors 

Keywords 
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1. INTRODUCTION 
Learning to program is hard. In a study conducted by McCracken 

et al., researchers found that as many as 35% of students fail their 

first programming course, while in the United Kingdom and the 

United States approximately 30% of computer science students 

did not understand programming basics [18].   This has led to a 

growing concern among computer science educators over the lack 

of programming comprehension of first-year computer science 

students.  

Novice computer programmers are of special interest to the 

computer science education community. Computer science 

education researchers have conducted investigations into the kinds 

of problems novice programmers encounter when learning to 

program. Novices’ knowledge has been found to be limited and 

shallow, hence they struggle with writing syntactically-correct 

programs [18]. They typically lack detailed mental models of 

various programming constructs [4,9], and tendto organize 

knowledge based on superficial similarities. Novices use general 

problem solving strategies instead of problem specific or program 

specific strategies, and approachprogramming "line by line" rather 

than at the level of meaningful program structures [21,25].  

Novices have been observed to have poor program comprehension 

as evidenced by activities involving the tracing of their code [19].  

They had a poor grasp at how a program executes and have 

problems with understanding that each instruction is executed in 

the state that has been created by the previous instructions [1]. 

Over the years, computer science educators and researchers have 

also conducted studies to identify the causes of these problems 

and to find possible solutions. One such method used is the 

collection and analysis of online protocols, which typically 

involve gathering information by augmenting the programming 

environments students use to write, compile and test their 

programs, thus allowing for automated data collection and 

subsequent analysis.  In this study, we collect students’ 

interactions with the Java compiler (mediated by the BlueJ IDE), 

which include the error message, the line number where the error 

appeared, the source code, and the time the compilation occurred.    

The goal of this study was to determine whether at-risk novice 

Java programmers can be accurately identified through the 

analysis of online protocols. We quantified the compilation 

behavior of the students by computing what Jadud calls the Error 

Quotient (Section 2.1) [14].  We also derived the errors 

encountered and time between compilations from the data logs.  

From this, we built a linear regression model based on the EQ, 

errors encountered and time between compilations and the 



students’ achievement in class as represented by students’ 

midterm exam scores.   

This present study has several potential benefits to educators 

teaching programming. Identifying at-risk students early in the 

semester can help educators provide targeted help and proper 

intervention to those who need it the most.  By knowing the errors 

students typically incur in their programming, educators can better 

address concepts that students find difficult to grasp or are having 

misconceptions about.  The EQ score can tell who among the 

students are struggling with syntax errors, prompting teachers to 

intervene to mitigate frustration.  Spotting at-risk students early 

may also help reduce the dropout rates in computer science 

classes.  

1.1 Research questions 
 From the online protocols of our students, we ask the following 

questions: 
1. How do students with different achievement levels differ in 

terms of: 
a. Error profiles? 
b. Average time between compilation profiles? 
c. EQ profiles? 

2. What factors predict the students’ midterm scores? 

2. REVIEW OF RELATED LITERATURE 
Many studies have been conducted that identified factors related 

to success in the learning of programming. Among the identified 

student characteristics that may contribute to student success in 

introductory programming courses are prior programming 

experience, gender, secondary school performance and dislike of 

programming, intrinsic motivation and comfort level, high school 

mathematics background,  attribution to luck for success/failure, 

formal training in programming, and perceived understanding of 

the material [5, 11, 12, 24]. 

Other studies have investigated teaching and learning approaches 

in relation to success in learning programming.  Byckling and 

Sajaniemi developed the concept of roles of variables and a 

visualization tool to support the concept. Initial experiments with 

the visualization of variable roles helped novices in their learning 

of programming [7]. A subsequent experiment that tested the tool 

showed that visualization significantly improved the debugging 

skill of the students [2]. 

Mayer stated that mental models are crucial to learning and 

understanding programming [8]. To this end, Dehnadi designed an 

instrument to reveal the learners' mental models regarding 

assignment of values to variables and to evaluate the consistency 

and viability of those mental models. He believed that consistency 

of mental model is more important than viability of the model. 

That is, if the learner believes there is one and only one rule that 

applies, and consistently applies that rule, then the consistent 

application of the rule can have a strong effect on success in early 

learning of programming [8].  However, after several experiments 

the instrument failed to accurately deliver expected results [6]. 

It is generally accepted that programming is not easy. When 

novices were interviewed about their experience while performing 

their programming assignments, students clearly recalled 

emotional experiences and reactions. One of the most harmful of 

these emotions is frustration [16].  Some students learned from the 

bugs they encounter in their programs, but others get frustrated 

every time they encounter a problem and tend to view bugs as a 

measure of their performance. Labeled by Perkins as stoppers, 

these students have a tendency to get discouraged by their 

mistakes and give up [19].  Recently, Rodrigo & Baker was able 

to build a model that predicted frustration from the online 

protocols of the students [22].  In another study, Rodrigo et al. 

found confusion, boredom and IDE-related on-task conversation 

had negative effect on achievement in an intro to programming 

course [23]. 

Other attitude and behavior that were found to have positive effect 

on achievement in early programming course are perfectionism 

and self-esteem, and high states of arousal or delight [15].  

Negative attitude such as disliking programming was found to be 

associated with lower success in early programming courses [3]. 

2.1   Error Quotient 
In an attempt to represent student compilation behavior as a single 

scalar quantity, Jadud developed the Error Quotient (EQ).  EQ is a 

function of error type, location, and proximity in time relative to 

other errors.  It was intended as an indicator of how well or poorly 

a student was progressing.   

Every record in the online protocol represents one compilation 

event.  Stored in each record is the error message (if there was an 

error at the time of compilation), the location (line number) of the 

error in the file, and the source code.  To compute the EQ, we 

examine the error message, the line number and the text of the 

source code.  Given two compilation events, we first check 

whether both compilations ended in error. If they did, we assign a 

penalty.  We then compare the error messages encountered.  If 

they are the same, another penalty is imposed.  If the errors 

occurred on the same line numbers, a third penalty is imposed.  

Finally, the programmer incurs a fourth penalty if the edit location 

of the source code on both events are the same.  The penalties are 

normalized and averaged across all pairs of compilations to arrive 

at the final EQ score of the session.  

An EQ score ranges from 0 to 1.0, where 0 is a perfect score.  An 

EQ score of 0 means that at no point did the student encounter 

errors in consecutive compilations.  A score of 1.0 means that 

every compilation resulted to the same syntax error in the same 

location. 

3. METHODOLOGY 
This study was conducted in the Department of Information 

Systems and Computer Science (DISCS) of the Ateneo de Manila 

University on the First Semester of School Year 2007-2008. The 

course CS21A - Introduction to Computing I (CS1 in the 

literature) is the first computer programming course offered by the 

department to students studying Computer Science or 

Management Information System, and it is a required course for 

students in both degree programs. The Computer Science students 

take the course during their first year in the program, while the 

MIS students take it during their second year.  It is presumed that 

students taking the course do not have prior knowledge of  

programming, but it is expected that they know basic operations 

of how to use a computer. 

The participants of this study were the students enrolled in CS21A 

on the first semester of 2007-2008 at the Ateneo de Manila 

University.  Of the 143 subjects participating, 35%  were female 

and 65% were male; 18% were students in the Computer Science 

program, and 82% were students in Management Information 

Systems. 

On the first day of classes students were informed about the study.  

A consent letter was given to each of the students. Each student 



affixed their signature and the signature of their parent/guardian if 

they were willing to be part of the study.  They were not, 

however, obliged to join the study.    

The students perform laboratory exercises in the computing 

laboratories that also served as lecture rooms. All the machines 

were installed with the same operating system, Java standard 

development kit, and BlueJ.  The machines were connected to a 

local area network and the Internet. The laboratories have one-to-

one student-to-computer ratios.   

Over the first nine weeks of the semester, we scheduled five days 

during which students performed laboratory exercises.  The lab 

exercises followed the lectures of the topics covered in the class 

and were designed to be finished in a one hour laboratory session.  

The exercises were given to the students on the day of their 

scheduled laboratory.   A driver program was also given in each 

exercise for the students to test their code. Data gathering of the 

compilation logs was completely automated.  Data was gathered 

only on the scheduled laboratory when the standard exercises 

were given.   

3.1 Tools for collecting data 
The data gathering tool was implemented as an extension to the 

BlueJ programming environment [14]. The focus of this study was 

on the compilation activities of the students inside the BlueJ IDE.  

A compilation event data was captured every time a student 

clicked the Compile button. Compilation events were recorded 

and stored in an SQlite database. Each record in the database 

represents one compilation event.  We only retained data for 

students who consented to participate in the study.   

3.2 Data pre-processing 
Once the data had been gathered, it was pre-processed for 

analysis.  For each study participant, all compilation records not 

related to the lab exercise were deleted.  Students whose online 

protocol records were incomplete because of absences or technical 

problems were deleted from the dataset as well. After all the 

deletions, the sample was reduced from 143 to 124 students; 79 

were male and 45 were female. 

4. RESULTS AND DISCUSSION 
The tools that we used for data collection allowed us to capture a 

copy of the students' work in progress every time they compiled 

their code.  Here we present the errors encountered, the time 

between compilations, the computed Error Quotients, and linear 

regression modeling results. Computed results for the entire five 

lab sessions will be presented.  

Using the midterm exam score, we categorized our students into 

three groups to determine behaviors of different student 

categories. Students who were one standard deviation below the 

mean were called the AtRisk group. Those who were one standard 

deviation above the mean were the HighPerforming group and 

those who were within one standard deviation from the mean are 

the Average group.  Twenty-three out of 124 students were in the 

AtRisk group. They received a score of 62 or below.  Twenty-five 

out of 124 students were in the HighPerforming group. They 

received scores of 89 and above.  The Average group was 

composed of 76 students.    

For each student, we extracted the timestamps, the errors 

encountered if there were any together with the line number and 

the contents of the file compiled.  We computed the average time 

between compilations, total compilations, the EQ and the sum of 

all errors encountered for the five lab sessions. We also made a 

tally of the frequency of compilations per ten second bins and the 

top ten errors encountered. 

A  total of 24,151 compilation events were collected during the 

five laboratory sessions,  14,470 of these events or 60% ended in 

error.    Table 1 shows the breakdown of these compilation events 

among the three student groups. Notice that the AtRisk group 

incurred the highest percentage of errors among the three groups 

even if they only made up 19% of our participants.  

Table 1. Total Compilation Events per student group 
 

 

Student Group 
Total 

Compila-

tion 

Events 

Events 

with 

Errors 

Percentage of 

events with 

errors 

AtRisk 4,822 3,169 66% 
Average 15,720 9,532 61% 
HighPerforming 3,609 1,769 49% 
Total 24,151 14,470 60% 

4.1.a.  Do different groups of students have 

different error profiles? 

Using the total error events, we compared the groups using a one-

way ANOVA to determine whether there were significant 

differences between the groups in terms of the errors they 

encountered. When the F test was significant, we proceeded with 

post-hoc analysis using Tukey HSD to check which among the 

groups had significant differences.  

There was a significant difference among groups on the Total 

Errors, F(2,121)=8.97, p<.001. Post-hoc test results showed that 

the HighPerforming group had a significant lower number of 

errors encountered from the AtRisk group at p < .001.  The 

HighPerforming group also had a significant lower number of 

errors compared to the Average group at p < .01, and the Average 

group was not significantly different from the AtRisk group.  

Post-hoc test results also revealed that students in the AtRisk 

group encountered the most errors among the three groups. 

We were also interested to know what kinds of compilation errors 

each group encountered most frequently.  We disaggregated the 

total errors into the top ten errors incurred by all the subjects.   

Figure 1 shows the top ten errors encountered over five lab 

sessions broken down by group.   

We then performed a one-way ANOVA on each error type to 

determine whether the incidence of these errors among the 

different groups were significantly different. For the errors where 

significant differences were found, another post-hoc test was 

performed. ANOVA revealed five errors where significant 

differences between the three groups were found. 



 

Figure 1. Top Ten Errors over Five Lab Sessions  

broken down by Student Group 

Table 2 shows the results of the post-hoc test on these errors. 

Table 2. Tukey HSD test on Error Types  

with Significant F test at 95% confidence interval 
 

Error Type Groups Compared p adj 
cannot find 

symbol-variable 
Average-AtRisk 0.02 
HighPerforming-AtRisk 0.00 
HighPerforming-Average 0.01 

incompatible 

types 
Average-AtRisk 0.91 
HighPerforming-AtRisk 0.08  
HighPerforming-Average 0.06 

identifier 

expected 
Average-AtRisk 0.33 
HighPerforming-AtRisk 0.00 
HighPerforming-Average 0.01 

class, 

interface, or 

enum expected 

Average-AtRisk 0.00 
HighPerforming-AtRisk 0.00 
HighPerforming-Average 0.70 

cannot find 

symbol-class 
Average-AtRisk 0.68 
HighPerforming-AtRisk 0.04 
HighPerforming-Average 0.09 

 

Table 2 shows that: 
 
1. the HighPerforming group was significantly different from 

the AtRisk group on only four errors: cannot find 
symbol-variable, identifier expected, 

class, interface, or enum expected, and 

cannot find symbol-class errors.  The mean 

differences show that the HighPerforming group encountered 

fewer instances of these errors compared to the AtRisk 

group; 

2. the HighPerforming group was significantly different from 

the Average group on only two   errors the cannot find 

symbol-variable and identifier expected 

errors.  The HighPerforming group encountered fewer 

instances of these two errors as compared to the Average 

group; and 
3. the Average group was significantly different from the 

AtRisk group on only two  errors the cannot find 

symbol-variable and class, interface, or 

enum expected errors.  The AtRisk group 

encountered more instances of these two errors when 

compared with the Average group. 
 

4.1.b.  Do different groups have different average 

time between compilations profiles? 
Every time students compiled their code, our data collection 

program recorded a timestamp, the time the event happened. 

Timestamps were precise up to the millisecond level. We did not 

attempt to categorize students based on the precise time between 

compilations—this level of granularity was too fine-grained for 

our purposes.  Instead, as in Jadud’s study [13], we arranged the 

time between compilations into 10 second bins and performed a 

one-way ANOVA on the three student groups to determine if 

there were differences in their compilation behavior in terms of 

how rapidly they compiled their programs.  Figure 2 shows a 

comparison of the compilation of the groups of students. 

 

 
 

Figure 2. Time between compilations over Five Lab Sessions 

broken by Student Group 

Table 3 summarizes the time interval in seconds at which there 

was a significant difference among the three student groups.  

Further analysis using Tukey HSD was performed and results are 

also shown in Table 3, from which we can see that:  

 
1. there was no significant difference between the Average and 

AtRisk group in terms of time between compilations;   
2. there was a significant difference between the 

HighPerforming and the Average group except on the time 

intervals 21-30, 111-120 and >120 seconds. The 

HighPerforming group performed fewer compilations in all  

time intervals compared to the Average group; and  
3. the HighPerforming group was significantly different from 

the AtRisk group except on the time interval 81-90 seconds.  
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The AtRisk group performed more compilations in all time 

intervals compared to the HighPerforming group.  
Table 3.  Tukey HSD test on time intervals with significant F 

test at 95% confidence interval 
 

Time interval 

(seconds) 

Groups Compared p adj 

1-10 Average-AtRisk 0.71 
HighPerforming-AtRisk 0.04 
HighPerforming-Average 0.05 

11-20 Average-AtRisk 0.25 
HighPerforming-AtRisk 0.00 
HighPerforming-Average 0.01 

21-30 Average-AtRisk 0.35 
HighPerforming-AtRisk 0.01 
HighPerforming-Average 0.06 

31-40 Average-AtRisk 0.53 
HighPerforming-AtRisk 0.00 
HighPerforming-Average 0.01 

61-70 Average-AtRisk 0.66 
HighPerforming-AtRisk 0.02 
HighPerforming-Average 0.04 

81-90 Average-AtRisk 0.81 
HighPerforming-AtRisk 0.31 
HighPerforming-Average 0.04 

111-120 Average-AtRisk 0.53 
HighPerforming-AtRisk 0.02 
HighPerforming-Average 0.10 

>120 Average-AtRisk 0.21 
HighPerforming-AtRisk 0.01 
HighPerforming-Average 0.10 

 

These results suggest that we cannot differentiate an Average 

from an AtRisk student based on the timing of when they click the 

compile button.  The HighPerforming group, on the other hand, 

can always be differentiated from the Average and the AtRisk 

groups.  Though there is one time interval where the 

HighPerforming group is not significantly different from the 

AtRisk group, particularly the  81-90 seconds interval, overall, the 

difference is significant at p <.05.  There is a need to further 

examine the data to check what the AtRisk group was doing 

exactly.  We suspected they could be doing something not related 

to the assignment or maybe they seemed lost or got stuck and did 

not know what to do as uncovered by the study of [16].  It is 

possible that although the AtRisk group spends a significant 

amount of time between compilations, the time between 

compilations is not spent productively. 

4.1.c.  Do different groups of students have 

different EQ Profiles? 
We took the average Error Quotient (EQ) of the students for the 

five lab sessions and used as our data for this analysis. We wanted 

to see how different the EQ scores were of the three student 

groups.  Figure 3 shows the EQ scores and percentage distribution 

among our participants. 
 

Result of one-way ANOVA showed that there was a significant 

difference in the EQ scores among the groups, F(2,121) = 20.528, 

p < .001. After performing post-hoc analysis, we found that  the 

Average group is significantly different from the AtRisk group at 

 

Figure 3. EQ Score distribution by Group 

p< .001 and the mean difference show that the AtRisk group have 

higher EQs compared to the Average group. The HighPerforming 

group was significantly different from the Average group at p<.01 

and the mean difference show that the HighPerforming group 

have lower EQs compared to the Average group. The AtRisk 

group was significantly different from the HighPerforming group 

at p<.001 and the mean difference show that the AtRisk group had 

higher EQs compared to the HighPerforming group (Table 4).  
 

Table 4.  Tukey HSD test on EQ at 95% confidence interval 
 

Groups Compared Mean difference p adj 
Average-AtRisk -0.11 0.00 
HighPerforming-AtRisk -0.19 0.00 
HighPerforming-Average -0.08 0.00 

 
4.2. What factors predict the midterm score? 
In this part of our data analysis, we first correlated the Total 

Errors encountered and average time between compilations with 

the Midterm Score.  It was important to get a correlation from 

these variables first in order to see if there was any relationship 

between them.  If there was no relationship existed between them, 

linear regression would fail.Pearson's product-moment correlation 

showed the following results: 

 
1. there was a significant negative relationship between the total 

errors encountered and the Midterm Score, r = -.41, p<.001; 
2. there was a significant positive relationship between average 

time between compilations and the Midterm Score, r = .27, 

p< .01; and 
3. there was a significant negative relationship between EQ and 

the Midterm Score, r= -.55, p <.001. 

Results revealed that there was a correlation between the errors 

encountered, average time between compilations and the Error 

Quotient. We then proceeded with performing linear regression to 

determine whether any of these were predictors of achievement as 

represented by the students’ scores on the midterm exam.To test 

the generalizability of our models we also computed each model’s 

Bayesian Information Criterion for Linear Regression (BiC’). The 

BiC’ is used to assess the tradeoff between model fit and the 

number of parameters (which can spuriously increase model fit). 

Values of BiC’ less than -6 signify that the model has 

significantly better fit than chance, given the number of model 

parameters [20]. 
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4.2.a. Predicting midterm score using the errors 

encountered 
Using the Total Errors encountered from the five lab sessions and 

the Midterm Score we arrived at the following model: 
 
Model 1: MidtermScore = 84.29698 - 0.07304*TotalErrors 
 

Multiple R2=0.1457, Adjusted R2=0.1387  
F(1,122)=20.81,  p-value<.001, BIC = -7.8 
 

Model 1 accounted for only 13.87% of the variance of the 

Midterm score.  From the intercept of Model 1, we concluded that 

the model could not predict the HighPerforming group.  However, 

this could also mean that the errors encountered by the 

HighPerforming group of students did not affect their 

MidtermScore.    

We performed multiple regression by inputting the top ten errors 

into our modeling tool.  Only three out of the ten errors were 

significant as seen in Model 2.   
 
Model 2: 

MidtermScore = 83.50274-0.25632*UNKNOWN_VARIABLE                     

- 0.42035*CLASS_INTERFACE_EXP  
 - 0.75506*UNKNOWN_CLASS 
 
Multiple R2=0.2645,  Adjusted R2=0.1994,F(10,113)=4.063,  p-

value<.001, BiC’=-10.2635  
 
Model 2 seemed to apply only to the Average and the AtRisk 

groups.  It could not predict HighPerforming students but it is 

much better compared to Model 1 in terms of predicting the 

AtRisk students.     

From the results in Section 4.1.a, we found that among the top 10 

errors, there were only five errors where the three groups had 

significant differences. And out of the five, three came out in 

Model 2 that significantly affects the Midterm Score. As added 

information and to help us further understand Model 2, we 

generated the means of the error types per group.     Table 5 shows 

the computed means. 
 

Table 5. Group mean values on error types 
 

 

Error Type 
Mean Values 

High-

Performing 
Ave-

rage 
AtRisk 

cannot find symbol – 

variable 
12.0 23.3 33.6 

incompatible types 1.3 5.6 6.3 
identifier expected 1.9 4.2 5.6 
class, interface, or 

enum expected 
0.8 2.2 7.8 

cannot find symbol-

class 
1.1 2.7 3.3 

 
Table 5 shows that the HighPerforming group incurred the least 

number of errors,  which implies that the HighPerforming group’s 

Midterm Score was not affected by the errors they encountered.  

However, the Midterm Scores of the students in the Average and 

AtRisk group  may be negatively affected  by  the  following 

errors: cannot find symbol–variable, class, 

interface, or enum expected and cannot find 

symbol-class.  Model 2 indicates that the more cannot 

find symbol – variable, class, interface, or 

enum expected and cannot find symbol-class 

errors the AtRisk and Average group encounters, the lower their 

midterm scores will be.  Also, we could notice in Table 5 that the 

AtRisk and Average groups had closer means and were higher 

compared to the HighPerforming group. 

4.2.b.  Predicting the midterm score using Time 

between compilations 
To determine if time between compilations was a good predictor 

of the Midterm score, we took the mean of the average time 

between compilations of the five lab sessions and came up with 

Model 3. 
 
Model 3:  MidtermScore = 65.04788  

+ 0.12107*AverageTBC_seconds 
 

Multiple R2=0.07272, Adjusted R2=0.06512  
F(1,122)=9.568,  p-value<.01, BIC = -1.97243 

 
Model 3 suggests that average time between compilations had a 

positive effect on the Midterm score.  The longer the time 

intervals between compilations, the higher the Midterm score will 

be.  Although this finding was intuitive, the model itself was quite 

weak at an R2 value of .06 and with a BiC’ value of -1.97. When 

we computed the predicted Midterm Scores the model was not 

able to predict AtRisk students and all students were predicted to 

belong to only one group.    

4.2.c.   Predicting midterm score using EQ scores 
We computed the average EQ score for the five laboratory 

sessions and together with the Midterm Score arrived at Model 4. 

Model 4: MidtermScore = 92.918 - 64.396*EQ 
 
Adjusted R2 = 0.2971, F(1,122) = 52.98, 
p-value = 3.591e-11, BIC’ = -17.3303 

 
In all the models that we have, Model 4 has the highest R2 value. 

The BiC’ value suggests that the model has significantly better fit 

than chance given the EQ parameter.  Model 4 suggests that EQ 

has a negative effect on the Midterm score. The higher the EQ, the 

lower the Midterm Score will be.   

We combined all factors in Models 1 to 4 to see if we can come 

up with a better model. These factors are the errors  

UNKNOWN_VARIABLE, CLASS_INTERFACE_EXP and 

UNKNOWN_CLASS and the EQ.  We arrived at Model 5.  The EQ 

came out to be a highly significant predictor of the Midterm score.   
 
Model 5:  MidtermScore = 90.58643-43.33380*EQ 
 

Adjusted R2 = 0.3073, F(7,116)= 8.795, 
p-value=1.202e-08, BIC’ = -20.8326 

 
The UNKNOWN_VARIABLE error had p=.06, an indication to look 

for in determining AtRisk students.  We can see from Model 5 

that the EQ accounted for about one-third of the variance of the 

Midterm Score based on the adjusted R2 value.  The BiC’ value 

indicates that our model has a significantly better fit than chance 

given the parameters. 



5. CONCLUSION AND FUTURE WORK 
In this paper, we attempted to determine whether there were 

differences among groups of students in terms of their error 

profiles, compilation profiles and Error Quotient profiles.  We 

also tried to determine whether any of these indicators could 

predict the midterm scores.  Based upon students’ online protocols 

we found that errors encountered by novices in Java programming 

can negatively affect their midterm score. We have shown that 

High Performing novices encountered similar errors with the rest 

of their peers.  However, when compared against the Average and 

AtRisk novices, High Performing novices encountered these 

errors less frequently.  The Average and AtRisk novices 

encountered more errors, and these two groups differed 

significantly on only three types out of the top ten errors.  We 

found that errors did not affect the Midterm Scores of the 

HighPerforming novices but there were three types of error that 

negatively affected the Midterm Scores of the Average and 

AtRisk novices: cannot find symbol – variable, 

class, interface, or enum expected and cannot 

find symbol-class errors. 

We also found that higher time between compilations yielded 

positive effect on the Midterm Score.  The average time between 

compilations performed by the High Performing novices was 

higher than those of the Average and the AtRisk novices. The  

HighPerforming group spent more time on their programs and 

wrote more lines of code compared to the other two groups.  

There was a significantly high incidence of recompilations in less 

than 30 seconds among the AtRisk and Average novices. The 

compilation behavior of the two groups was the same. 

We generated linear regression models that predicted the Midterm 

Score of a student given the errors encountered, time between 

compilation and the EQ across five lab sessions. The model with 

EQ as a factor could significantly predict Midterm Scores better 

than would-be-expected by chance.  However, our models came 

out to be poor at predicting AtRisk students.  

From the significant findings of this study, we identify several 

possible avenues for further investigation. We could use other 

achievement indicators such the grade for lab exercise where data 

were collected to strengthen our models. We can also improve on 

the basis of grouping the students.   Instead of just one group to 

represent the average students, we can break them into high-

average and below-average students.  We can use the standard 

cut-off in the grading systems for A, B, C and D.  We surmised 

that high-average students had similar compilation behavior with 

the high performing students and that below average and at-risk 

students may have had similar behaviors as well. 

The models derived from the errors encountered suggest that we 

look out on students who struggle with errors.  Additional 

investigations can be undertaken to explore the conceptual errors 

that generate these syntax errors.  The differences in the types of 

errors encountered by AtRisk and HighPerforming students, for 

example, may say something about the students’ mental models 

and where their understandings are flawed.  Insight into these 

flaws can help computer science educators design interventions to 

correct these mental models. 

Finally, we believe there is potential to use IDEs intelligent 

systems that offer help or guidance to students or gives signal to 

the teacher for provision of help to some students.   Support 

systems of this type may help mitigate student frustration and 

confusion, increase programming comprehension, and raise 

achievement. They may also contribute to greater student 

retention in computer science and related disciplines. 

In conclusion, this study has shed light on the differences of the 

profiles of novice programmers.  Using the compilation logs we 

can spot who among the novices are performing well.  Though we 

have not successfully attained our goal of identifying at-risk 

students, the study has given us clues on which compilation 

behaviors at-risk students are exhibiting.  Our suggestions on 

improving the study might give us better models in the future. 
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