

Thomas Dy

Helping the Compiler Help You

Programming

do {

 programmer.write_code();

 if(lazy) {

 sleep();

 }

 compile_code();

} while(compiler.has_errors());

Compiler: Me no speaky English

• Programmer: “Compiler, what is 5 x 5?”

• Compiler: “Eh? What's 5 followed by an x?”

• Programmer: “You know, 5 *times* 5.”

• Compiler: “Eh? What's 5 followed by *times*?”

• Programmer: “5 * 5;”

• Compiler: “25”

Novice Programmers

• Novice: “Compiler, what is 5 x 5?”

• Compiler: “Eh? What's 5 followed by an x?”

• Novice: *in a robotic voice* “What is 5 x 5?”

• Compiler: “Eh? What's 5 followed by an x?”

• Novice: “5 x 5”

• Compiler: “Eh? What's 5 followed by an x?”

• Novice: “Errr, uhhhh, ummm” *exit BlueJ*

Literally non-literal

• “Bob and me study CS.”

• “Did you mean, Bob
and I?”

• Non-literal errors

• “The house is red
pretty.”

• “Did you mean, 'The
house is red. Pretty.'?”

Help the Compiler Help Who?

• Confused students

• Teachers of confused students

• Parents of confused students

Others are Trying to Help Too

• QUT Framework

• Expresso

• HelpMeOut

(Confused) Students

• Students of CS21a SY 2007-2010

• Introduction to Programming

• Java

• BlueJ

The Computers Have Eyes

• Compilations are logged
● Source code
● Timestamp
● Error message
● ...and many more!

• BlueJ Extension sends code via network

All Your Code Are Belong to Us

• BlueJ Browser, server web interface

•

The Data

• Focus on top errors

Error Number

Unknown variable 2772

';' expected 1710

'[', ']', '(', ')', '{', '}' expected 1403

Unknown method 1382

Incompatible types 1131

Missing return statement 999

Illegal start of expression 762

Unknown class 617

Identifier expected 543

Class or interface expected 393

Stuff We Did

• Start from compiler's output

• Check the source as well

• Look for patterns
● <number> x <number>
● <method definition> (
● class <name> <name>

Program Execution

compile_code();

if(compiler_error() == “; expected”) {

 // match known “; expected” errors

}

else if(compiler_error() == “missing var”) {

 // match known “missing var” errors

}

else if // check other error types

...

output_actual_error();

Looks Promising

• Data sets
● SY 07-08 for training
● SY 09-10 for testing

• Generally ok

Error Percent
Accuracy

Cannot find
symbol

86% (out of 100)

';' expected Not implemented

'(' expected 44% (out of 100)

'(' or '[' expected
and '[' expected

100% (out of 80)

incompatible
types

87% (out of 100)

Problems?

• Lacking log data

• Accuracy could have been better

• Ambiguous errors
● “The house is red pretty.”

– “The house is red and pretty.”

– “The house is red. Pretty.”

Cascading Compiler Confoundment

• Errors tend to cascade

• “The house is red pretty.”
● Missing '.' after “red”
● “pretty” should be capitalized

• “5 x 5”
● Missing ';' after first 5
● “x” is not a statement
● Missing ';' after “x”

Being Lazy is Good

• Reuse data

• Reuse analysis techniques

• Let computer do the pattern matching

No Such Thing as a Free Lunch

• Data preparation is still important
● Label the data
● Write test cases

• Turn source code into “features”
● Error class
● Position of the error
● Context

Computers Can Learn

• Decision Trees
● Flowchart-like model
● If <something> go here, otherwise go there

• Rule Induction
● List of rules
● If <this> and <that> and <that>, it's <answer>

• Easy to implement in code

Good News and Bad News

• Decision trees are marginally better

• Development set performance was amazing

• Actual test set performance was disappointing

Why So Bad?

But!

So Now, What Do?

• Fusion!

• Test out on a better dataset

• Filter out cascading errors

Thomas Dy

Helping the Compiler Help You

Programming

do {

 programmer.write_code();

 if(lazy) {

 sleep();

 }

 compile_code();

} while(compiler.has_errors());

In general, the process of programming is a cycle of
writing source code and compiling it.

A programmer writes code, then compiles it. If there
are any errors, he will go back and edit the code and
compile it again. So on and so forth until you have a
working program.

Compiler: Me no speaky English

• Programmer: “Compiler, what is 5 x 5?”

• Compiler: “Eh? What's 5 followed by an x?”

• Programmer: “You know, 5 *times* 5.”

• Compiler: “Eh? What's 5 followed by *times*?”

• Programmer: “5 * 5;”

• Compiler: “25”

We might assume that a compiler will know how to
correct all our mistakes. But as any seasoned
programmer would know, this is not always the case.

Compilers are programs themselves and they tend
towards more formal standards such as strict
grammars as those make it easier for the compiler
and eliminate ambiguity.

Neither can they read our minds and understand what
we mean when we commit errors when we code.

Novice Programmers

• Novice: “Compiler, what is 5 x 5?”

• Compiler: “Eh? What's 5 followed by an x?”

• Novice: *in a robotic voice* “What is 5 x 5?”

• Compiler: “Eh? What's 5 followed by an x?”

• Novice: “5 x 5”

• Compiler: “Eh? What's 5 followed by an x?”

• Novice: “Errr, uhhhh, ummm” *exit BlueJ*

In addition, it's even more problematic for novice
programmers since they don't fully grasp the syntax
of the language yet.

Literally non-literal

• “Bob and me study CS.”

• “Did you mean, Bob
and I?”

• Non-literal errors

• “The house is red
pretty.”

• “Did you mean, 'The
house is red. Pretty.'?”

We therefore categorize compiler errors as either literal
or non-literal.

Literal errors are those where the compiler's message
corresponds with the error. This is the case where
the compiler just works, so all is fine and dandy.

Non-literal errors are those where the compiler's
message does not point towards a solution to the
problem that you have.

Help the Compiler Help Who?

• Confused students

• Teachers of confused students

• Parents of confused students

The most to benefit from an informative compiler would
be novice programmers who are just starting to learn
the language. Non-literal errors can leave them in a
state of helplessness which could turn them away
from continuing to learn.

Others are Trying to Help Too

• QUT Framework

• Expresso

• HelpMeOut

There have been other attempts to solve the problem
of non-literal errors.

QUT had developed a program that gives fill-in-the-
blanks style programming so students don't have to
bother with unneeded syntax at the moment thus
reducing the chance of getting non-literal errors.

Expresso scans source code for common mistakes
before passing it on to the compiler.

HelpMeOut crowdsources the detection and solutions
of non-literal errors. Students' compilations are
uploaded to a server. When a student encounters an
error, the server checks if somebody else had
encountered it and shows a fix for the said problem.

(Confused) Students

• Students of CS21a SY 2007-2010

• Introduction to Programming

• Java

• BlueJ

For the study, we used data from students taking
CS21a, an introductory programming course. Our
data spanned years 2007 up to 2010. In the course,
the students are introduced to Java. In line with this,
they use BlueJ and IDE made specifically for novice
programmers.

The Computers Have Eyes

• Compilations are logged
● Source code
● Timestamp
● Error message
● ...and many more!

• BlueJ Extension sends code via network

We collected the students' compilation data. Every
time a student compiles his or her code, it is sent to a
server where this information is saved. Some
information that is recorded are the actual source
code, the time it was submitted, the error message,
etc.

This was done via an extension to BlueJ. The
extension was actually developed in the University of
Kent by Matthew Jadud in line with his dissertation.

All Your Code Are Belong to Us

• BlueJ Browser, server web interface

•

At the time, the logs were simply SQLite files. Think
entire databases in a single file, or more loosely and
Excel file. And each file corresponded to one student
for one lab session. This is not exactly conducive for
inspecting the logs.

To get over that problem, we also developed a web
interface for the server, or the BlueJ Browser. It could
take in the many log files and put them in a central
place which would be easier to browse and even
search for code.

Another nice thing we could do was to highlight the line
which had the error. No longer did we have to copy
out the code, paste it to Notepad++ and then check
the line number.

Now, the BlueJ Browser also serves as the logging
server instead of just importing it from the individual
files.

The Data

• Focus on top errors

Error Number

Unknown variable 2772

';' expected 1710

'[', ']', '(', ')', '{', '}' expected 1403

Unknown method 1382

Incompatible types 1131

Missing return statement 999

Illegal start of expression 762

Unknown class 617

Identifier expected 543

Class or interface expected 393

We obviously didn't want to look at all of the data. That
would have been too time consuming and the effort
spent on it would not have been worth it.

So first we took a look at the most frequently occuring
errors and focused on those. Here is a list from the
07-08 data that we had. So for the first part, we did
only the top 5 and later on the top 10.

Stuff We Did

• Start from compiler's output

• Check the source as well

• Look for patterns
● <number> x <number>
● <method definition> (
● class <name> <name>

So now that we have a target, we had to think of an
approach to detecting non-literal errors.

First, we imagined that even if the compiler does give
non-literal errors, it's still an amazing piece of
software and it might be *somewhat* right if not
exactly. So we worked off what the compiler outputs.

Another thing we would need to do is to read the
source files, otherwise we really wouldn't have
anything to base our detection on.

Then, we looked for patterns in the errors that were
non-literal. Stuff like, oh lots of people do a 5 x 5 or a
6 x 2 so maybe we should detect that. So we'd
program a detector for sequences of <number> x
<number>.

Program Execution

compile_code();

if(compiler_error() == “; expected”) {

 // match known “; expected” errors

}

else if(compiler_error() == “missing var”) {

 // match known “missing var” errors

}

else if // check other error types

...

output_actual_error();

The general flow of our detector is first we compile the
code using the compiler. Then we check what the
compiler outputs. If it's some error, say semicolon
expected. We then match all non-literal errors that
we know will occur given a semicolon expected error.
We did this for the top 5 errors described earlier.

Looks Promising

• Data sets
● SY 07-08 for training
● SY 09-10 for testing

• Generally ok

Error Percent
Accuracy

Cannot find
symbol

86% (out of 100)

';' expected Not implemented

'(' expected 44% (out of 100)

'(' or '[' expected
and '[' expected

100% (out of 80)

incompatible
types

87% (out of 100)

The results seem okay...

Problems?

• Lacking log data

• Accuracy could have been better

• Ambiguous errors
● “The house is red pretty.”

– “The house is red and pretty.”

– “The house is red. Pretty.”

Some problems we had with this approach were that
the log data we used wasn't exactly complete. For
example, we only had data on what line the error
occurred in but not the exact position.

Accuracy could have been better. We could also have
included more errors into the detection.

We also have the problem of ambiguous errors. It
might be possible to fix something in different ways
and both are perfectly valid. You can tell however
which one is more correct based on the context of
the code, but this reasoning is difficult to put into a
program.

Cascading Compiler Confoundment

• Errors tend to cascade

• “The house is red pretty.”
● Missing '.' after “red”
● “pretty” should be capitalized

• “5 x 5”
● Missing ';' after first 5
● “x” is not a statement
● Missing ';' after “x”

So we decided to take a different approach. One thing
we noticed was that errors tended to cause other
errors after them. For example, missing the “and” in
“The house is red and pretty.” Might make the
compiler mistake the sentence to end right after “red”
this would then make the compiler mistake “pretty” to
be the start of a sentence and therefore should be
capitalized.

These errors might be called cascading errors.

Being Lazy is Good

• Reuse data

• Reuse analysis techniques

• Let computer do the pattern matching

Maybe it would also be good to be lazy. We could
reuse the data that we already have. We could reuse
the analysis techniques that we did. Checking the top
errors, and then focusing on that. And also still
working off the compiler.

We could also let the computer do the pattern
matching instead of us manually doing it. Data
mining techniques exist just for that particular
problem.

No Such Thing as a Free Lunch

• Data preparation is still important
● Label the data
● Write test cases

• Turn source code into “features”
● Error class
● Position of the error
● Context

It's not all rainbows and butterflies with data mining
though. We would still need to at least label the data
to serve as examples for the computer to learn. We
would also need to write test cases to better isolate
the errors we want to study. This served as the
development set we would always test on.

Another thing we needed to do was to convert the
source code into features or simple exact
descriptions of the code as source code is too free
form and that doesn't work too well with data mining.
So a description of a source file might be something
like what the error class is, since the error message
has some other information in it like variable names
and etc.

Computers Can Learn

• Decision Trees
● Flowchart-like model
● If <something> go here, otherwise go there

• Rule Induction
● List of rules
● If <this> and <that> and <that>, it's <answer>

• Easy to implement in code

We used 2 data mining algorithms with our data. One
is decision trees which creates a flowchart like
model. If you've ever seen something like “What to
do in a fire.” You might have something like, “Is the
fire big?” If yes, get out now. If no, “Is there a fire
extinguisher in the room?” If yes, try to put it out. If
no, etc.

We also have rule induction which is more like a set of
laws. “If the fire is small and there is a fire
extinguisher in the room, try to put it out.”

What's nice about these algorithms is that the models
they make can be easily put into code. You can just
use if-statements to do it.

Good News and Bad News

• Decision trees are marginally better

• Development set performance was amazing

• Actual test set performance was disappointing

After evaluating both algorithms, we found the decision
tree performed marginally better so we only used
that for the rest of the tests.

The results were a mixed bag, but more of a
disappointment. Obviously, results on the
development set were great since that's what we
were using to improve the detector.

The actual test set though, which was composed of
random labeled student code, was bad.

Why So Bad?

One reason why it's bad is that the development set
we were working with didn't really reflect the actual
conditions of code. The code in the development set
is comprised of source files with only one error each.
In order to better isolate them. However, the models
that we get rely on this fact. Hence the low accuracy.

We can remedy this by diversifying the development
set by including source files with more than 1 error.

But!

Notice though, how some errors tend to clump together
under just one branch. This does not exactly
contribute to accuacy for the detector. But for those
errors, we can actually use what we developed
earlier. By mixing the two techniques, we can save
time by having a detector for some errors be
automatically generated. And then just manually
doing whatever is left.

So Now, What Do?

• Fusion!

• Test out on a better dataset

• Filter out cascading errors

So, what we can do is, try out combining the 2
techniques and seeing where that takes us. It might
also be better to get better datasets to test and
develop on.

And if possible, a really nice application for this is to
filter out the cascading errors so we're only left with
the actual errors we have to fix.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

