
INTRODUCTION

Extension of An Intelligent Tutoring System for Debugging

METHODOLOGY

	 Debugging is the process of locating errors in source program and fixing them. Errors as re-
ported by the compiler may be classified as literal or non-literal. Literal errors are syntactic errors
correctly identified with compiler errors messages. Non-literal errors, on the other hand, are er-
rors that are incorrectly reported by compiler error messages. In this light, the intelligent tutoring
system for novice programmers has been developed to aid novice programmers in debugging
non-literal errors. The intelligent tutoring system will serve as a guiding tool for novice program-
mers by showing the proper error message, an explanation of the nature of the error, and an ac-
companying pair of syntactically correct and incorrect sample code. With novice programmers
as the target audience, we improved the interaction between them and the intelligent tutoring
system by simplifying the graphical user interface and providing a deeper analysis of the log col-
lected by the server. We also integrated the system to the IDE BlueJ as an extension. We believe
that this made debugging non-literal errors for novice programmers an easier experience.

Authors:

Joyce Ann D. Rada
Javelin Karl C. Magtalas
Carlo T. Martinez

Affiliation:

Ateneo Laboratory for the Learning Science,
Department of Information Systems and Computer Science,
 Ateneo De Manila University

The interface, ‘ErrorHandler’, is an interface that provides two (2) methods to be defined by im-
plementing classes. These two methods are ‘boolean accepts (String errorMessage)’ and ‘String
process (int lineNumber, String code)’. The first method is designed to check if the errorMes-
sage parameter passed in belongs to the ErrorHandler class implementing this method. It will
return a value of true if the errorMessage does belong to this certain class and false if otherwise.
The second method processes the error of this class type given a lineNumber and the code. It
then returns the appropriate String message depending on the actual error of this category. Sev-
en classes implement this interface

Most ITSs’ user interfaces are more focused on the user than the performance. This “friendliness” of
an ITS user interface is important in helping the student maintain the acquisition of knowledge by
keeping his or her confidence and comfort in using the system on a high level [21]. Thus, the graph-
ical user interface for this ITS will be modified to make it simpler and more userfriendly. The basis for
defining ‘user-friendly’ will be first and foremost feedback from the novice programmers who have
used the current ITS. Using this definition of user-friendliness, the current graphical user interface
will be modified accordingly. Below are screenshots from the previous system developed by Go and
Ligunas[9].

The first deployment consisted of nine (9) first year BS Computer Science students. The first
deployment measured how well the ITS faired with human interaction. The students were
tasked to work on a sample problem given to them using a copy of BlueJ that extends the ITS.
The topics for evaluation afterwards consist of two parts: close-ended multiple choice feedback
and open-ended written feedback. The close-ended part consists of thirteen (13) questions that
revolve around design, content, and other aspects of the ITS that don’t fall under the previous
two categories. The open-ended part consists of six (6) questions in which the testers will
respond with their experiences in using the ITS. Below is a tally of the results of the close-ended
questions.

Taking a look at the results of the first deployment, the improved interface satisfied the needs of
the users. Though there is still room for improvement, the current system reached its objective.
Adding new errors is out of our scope since another group will be dealing with it. Their output
will help us widen the scope of error messages though the system that we created can stand on
its own.

With the initial results gathered, the graphical user interface that will best suit the needs of nov-
ice programmers to help them in understanding and fixing the non-literal errors committed ws
determined. With this, the current interface of the system with the default BlueJ background col-
ors will be the best choice. The basic features of the system: nature of the error and examples
about the error, will remain the same because it is where its helpfulness comes in.

As for the logs, further testing with the improved GUI is needed. The group will conduct tests to
test it with the developed system

Aside from the appearance of the user interface, the group worked on improving the behaviour of
the system, such as eliminating the persistence of the windows of the previous iteration of the ITS
which may cause frustration for the users.

The group modified xml scripts developed by the previous group by correcting semantic errors. Be-
low is a sample code of an error.

<?xml version=”1.0”?>
<BraceExpected>
	 <error>
		 <id>InvalidClassName</id>
		 <a>Invalid class name.
		 Valid class names are composed of Unicode letters, digits,
		 currency symbols and underscores. They must not be separated by any spaces.
		 By convention, class names are nouns with the first letter of each word capitalized.
		 <c>
Invalid class names:
	 A)	 Mobile Phone
	 B)	 Food|Drink
----------------------+0+----------------------
Valid class names:
	 A)	 MobilePhone
	 B)	 FoodAndDrink
		 </c>
	 </error>
	 <error>
		 <id>ClassAsType</id>
		 <a>Class used as a type.
		 The class itself is the type. Check that you did not use the word “class” as a type.
		 <c>

	 The BlueJ extension created by the previous group was used as a reference by our group for
the further evaluation and improvement of the system. It sill looked for errors and continued re-
cording logs everytime there’s a user input.

	 The source code of the ITS is composed of sixteen (16) classes and one (1) interface

SYSTEM REDESIGN

ITS SOURCE CODE REVIEW

GRAPHICAL USER INTERFACE DEVELOPMENT

RESULTS

DISCUSSION

MODIFIED XML SCRIPTS

Table 2. Class Implementing “Errorhandler”

Brace Expected Error

The group modified the interface of the system by adding bright colors to appeal to the eyes of the user.

First Deployment

Interface

MissingReturnStatementErrorHandler

IncompatibleTypesErrorHandler

CodeScannerClasses

Messages

CannotFindSymbolErrorHandler

Processor

SimpleExtension

ErrorHandler

IllegalStartOfStatementErrorHandler

SemicolonExpectedErrorHandler

SampleForm

ScriptReader

BraceExpectedErrorHandler

Tools

BracketExpectedErrorHandler

Script

ITSForm

BraceExpectedErrorHandler

BracketExpectedErrorHandler

SemicolonExpectedErrorHandler

IllegalStartOfStatementHandler

IncompatibleTypesErrorHandler

MissingReturnStatementHandler

CannotFindSymbolErrorHandler

Layer 1 (Error Description)

Modified Layer 1 (Error Description) Modified Layer 2 (Suggested Solution) Modified Layer 3 (Sample Wrong and Correct Code)

Layer 2 (Suggested Solution)

Layer 3 (Sample Wrong and
Correct Code)

Wrong code:
	 class GasStation = new GasStation();
----------------------+0+----------------------
Correct code:
	 GasStation gs = new GasStation();
		 </c>
	 </error>
	 <error>
		 <id>ClassThrowsException</id>
		 <a>Placed a throws Exception in class.
		 You might have placed a ‘throws Exception’ in the class declaration.
		 Place ‘throws Exception’ in method method declarations instead.
		 <c>
Wrong code:
	 public class Driver throws Exception
	 {
		 public static void main(String args[])
		 {
		 }
	 }

 SD D N A SA Ave.

Design Feedback

I thought the system is very easy to use. 0 0 0 3 6 4.67

It was simple. 0 0 0 3 6 4.67

The on-screen characters are easy to read. 0 0 0 2 7 4.78

I thought the system was too inconsistent. 1 4 3 1 0 2.44

The interface of this system is pleasant. 0 0 0 5 4 4.44

Content Feedback

The ITS’s eror identification is accurate. 0 0 2 4 3 4.11

The help messages are helpful. 0 0 1 3 5 4.44

The range of errors returned was sufficient 0 1 0 7 1 3.89

Others

Bugs are easier to locate because of the

ITS.

0 0 1 3 5 4.44

I recommend the ITS to novice

programmers.

0 0 3 0 6 4.33

It will further improve my debugging skills. 0 0 2 4 3 4.11

I think I need the support of a technical

person to be able to use this system.

2 3 2 0 2 2.67

I think that I would like to use this system. 0 0 2 4 3 4.11

