Concerns about (E)DM: why to look for *strong, causal* relationships

Joseph E. Beck, Doug Selent and Dovan Rai

Main point

- With large data sets, statistical hypothesis testing breaks down
 - Finds far more relationships than we care about (or that even exist!)
 - Can find relationships that are meaningless
- Better approaches
 - Tetrad for relationship mining
 - Using cutoff of absolute magnitude of effect rather than P-values

Let's imagine a study

• We collect data on 20 variables about students in our study (# of columns)

Collect data on these 20 variables

 gender learn rate prior knowledge grit like subject num problems solved correct time in tutor gaming off task

 prior_exam score tutor version teacher quality age amount_of_homework homework rate num hints parental involvement SES pre post gain

Let's see what this looks like

- Each row is the data obtained from one student
 - Typically each student contributes to more than one row, but keeping things straightforward

• (SPSS)

Run a study

• Collect data on 100 students

- Run a correlation analysis to find related variables
 - Correlation tests to see if there is a linear relationship between two variables

Correlations

- Statistical test between 2 variables
- Ranges frm -1 to 1
 1 perfect positive relationship
- Height / weight correlation at about 0.6
- Height / IQ correlation about 0.2
- Joe's rule of thumb: ignore (-0.2, 0.2)

Quick demo

• (SPSS)

- Show
 - Correlation table
 - Statistical significance (*, **)
 - Smaller→more certainty
 - Scatterplots

Results for 100 student study

• Find 66 relationships with P<0.01

Statistically powerful relationship

• Thoughts?

Results for 100 student study

• Find 66 relationships with P<0.01

- Thoughts?
 - More results than I want to write about
 - Or read

Tell our grad students to run a bigger study

• Collect data on 1000 students

Ν	# relationships P<0.01
100	66
1000	84

• Thoughts?

Hire some additional assistants

• Collect data on **10,000** students

Ν	# relationships P<0.01
100	66
1000	84
10,000	94

• Yep, more data lets us find more relationships

Really make assistants work...

Collect data on 100,000 students

Ν	# relationships P<0.01
100	66
1000	84
10,000	94
100,000	103

• Thoughts?

Really make assistants work...

Collect data on 100,000 students

Ν	# relationships P<0.01
100	66
1000	84
10,000	94
100,000	103

 What is the relationship between the amount of data and our ability to understand how the world works?

Really make assistants work...

Collect data on 100,000 students

Ν	# relationships P<0.01
100	66
1000	84
10,000	94
100,000	103

• What if I told you there were only **29 actual** relationships in the data?

How could I know how many relationships?

- Generated the data synthetically
- Made up plausible model of how the world behaves
 - Was not thinking of pedagogical purposes or creating nightmare scenarios for statistics
- Let's take a look at it

- (tetrad)

Seems to be a mismatch

There are 29 relationships in the model (I counted)

– But SPSS found from 66 to 103 relationships

• Why is SPSS finding so many more relationships?

- 3 type of reasons

Reason 1: type I error

- Type I error: imaging there is a relationship there even when there isn't one due to random error
 - P<0.01 means a 1% chance of hallucinating a relationship
- 20 variables → (20² 20) /2 = 180 possible relationships

- E(type | errors) = 180 * 0.01 = 1.8

Type I errors can matter

- Probably not in this case, since only 1.8 such errors
- But gets worse as C (# of columns) increases
 50 columns → 12.25 errors
 - 100 columns \rightarrow 49.5 errors
- One disadvantage of aggregating information together

Reason 2: larger N → smaller cutoff for "significant" result

- Always remember what P-values mean
 - It is the probability the result is **nonzero**
 - Not big, not important, not meaningful
- More data provides more certainty that the result is not equal to 0

How data impact P-values

 Let's consider the relationship between amount of homework assigned and a student's grit (show in SPSS)

How data impact P-values

 Let's consider the relationship between amount of homework assigned and a student's grit (show in SPSS)

Ν	Correlation	P-value
100	-0.16	0.11
1000	-0.19	0.000000041
10,000	-0.13	3.9 * 10 ⁻³⁹
100,000	-0.13	≈0

Correlation strength fairly stable

Ν	Correlation	P-value
100	-0.16	0.11
1000	-0.19	0.000000041
10,000	-0.13	3.9 * 10 ⁻³⁹
100,000	-0.13	≈0

Correlation p-value strongly affected by data size

• Has relationship gotten any more important by collecting more data?

Correlation	P-value
-0.16	0.11
-0.19	0.0000000041
-0.13	3.9 * 10 ⁻³⁹
-0.13	≈0
	-0.16 -0.19 -0.13

More data \rightarrow find more relationships

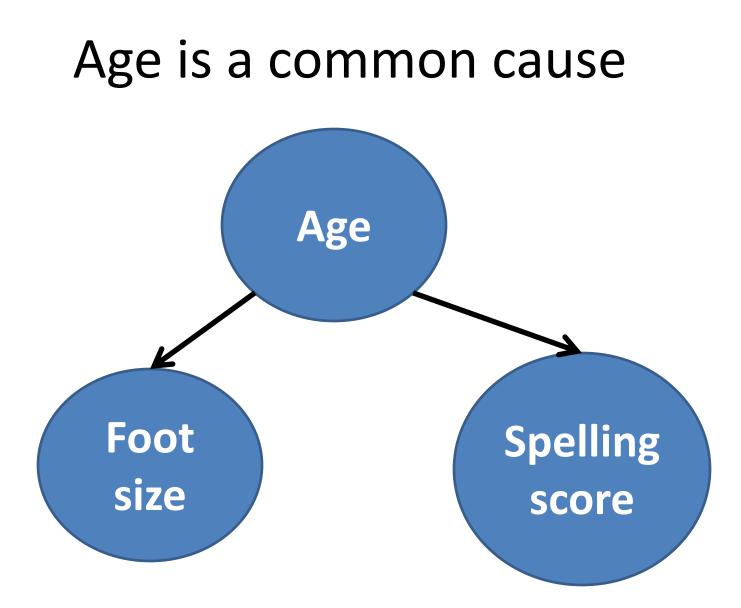
• Even if the strength of the relationship is marginal (height and IQ correlate at about 0.2)

Correlation	P-value
-0.16	0.11
-0.19	0.0000000041
-0.13	3.9 * 10 ⁻³⁹
-0.13	≈0
	-0.16 -0.19 -0.13

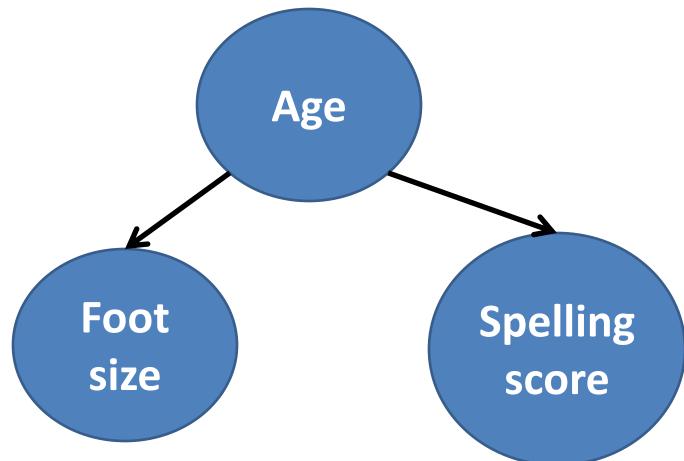
Reason 3: spurious relationships

 My favorite example: foot size and spelling ability are strongly correlated with each other for primary school students

- Why?

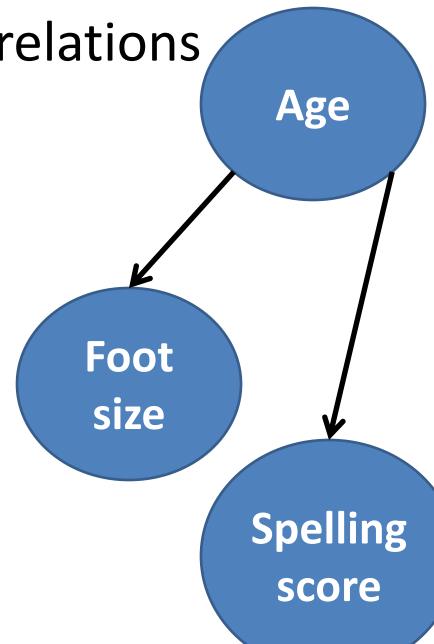


Do we care that foot size and spelling ability are correlated?

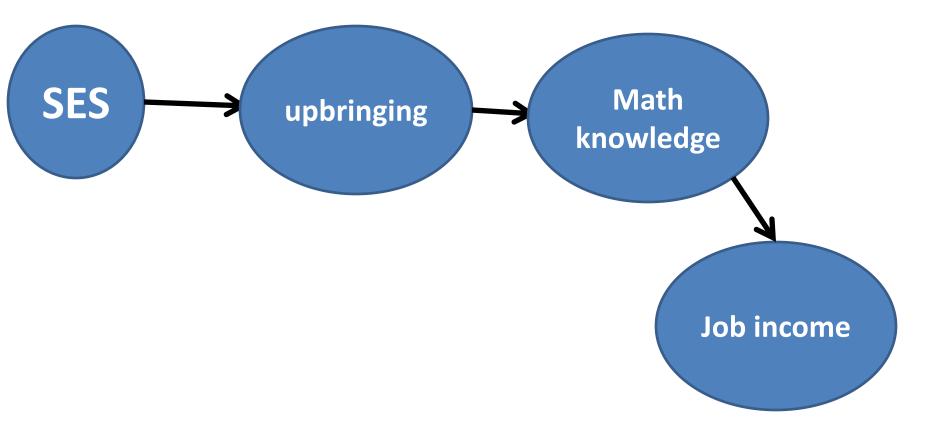


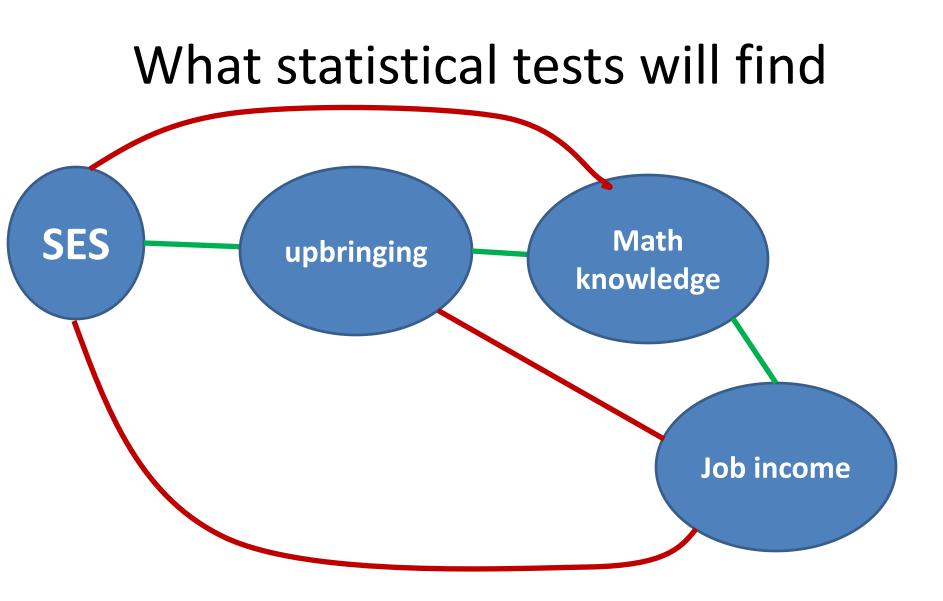
Partial correlations

- Foot size and spelling are correlated
- Partial correlations control for impact of another variable and measure *direct relation*
- Partial correlation of foot size and spelling, partialing out age is ≈0

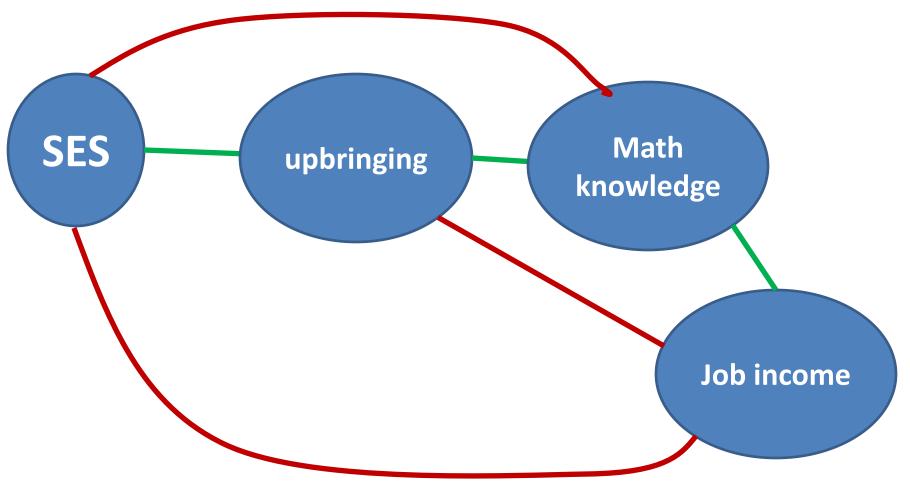


More generally

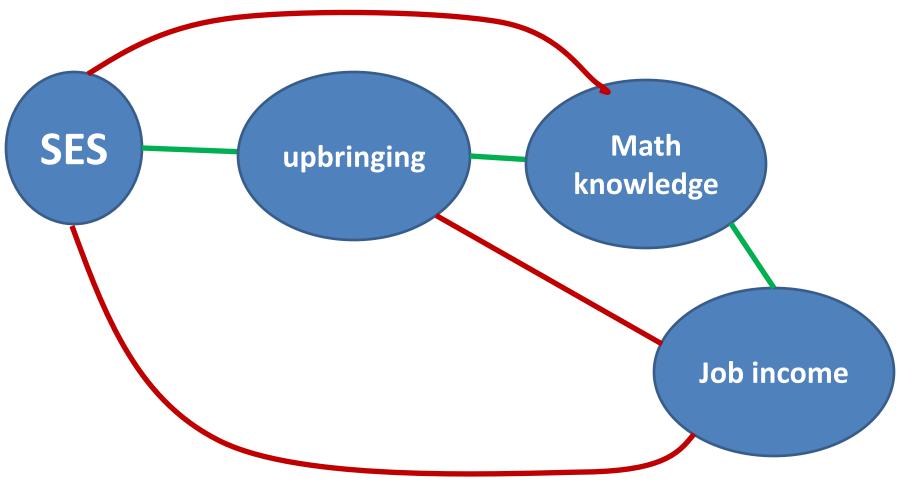




Because those terms do correlate



Call these spurious relationships



An example from our data set

• SES (Socio Economic Status) and post test score correlate at 0.23

- A ha! Wealthier students to better

- Is this relationship real, or like shoe size and spelling ability?
- What if we look at a third variable, amount of parental involvement in schooling?
 - Correlates at 0.49 with SES and 0.27 with test gain

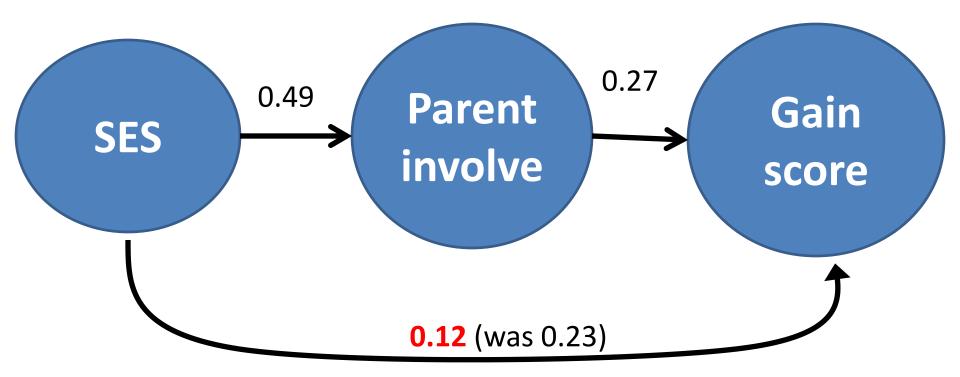
One possibility

What if SES → parental involvement → test score gain

- Is there some way to test whether SES influences test score gain after accounting for parental involvement?
 - Yes. Partial correlations

What a partial correlation does

 Partial correlation SES, post test gain, partialing out parental involvement:



Neat!

- Partial correlations are a way to test *direct relationships*
 - i.e., $A \rightarrow B \rightarrow C \rightarrow D$ means A and D are associated, but not a direct relationship
- Partial correlation of shoe size, spelling ability, partialing out age ≈ 0

But...

- Irritating to keep running partial correlations
 - Lots of possible variables to consider for partialing
 - (SPSS)
 - Is one choice better than another?
- Weirdly, a partial correlation can cause a relationship to exist even when it doesn't
- How to report it in a paper?

Wish list, a tool that

• Would test sets of partial correlations and discover direct relationships automatically

 Could display it in a easy to understand manner

Tetrad

- Designed as a causal modeling tool
 - Can sometimes infer causal relationships from observational data (really neat topic)
 - Let's forget about that aspect
- Constructs a graph, such that
 - A→B→C means: A influences B, B influences C, but there is no direct influence of A on C (even though A and C probably correlate with each other)

How well does it do...

- Used same simulated data as with SPSS
- Ran Tetrad *search* with it
 - Tries to recover a graph that represents relationships between variables
 - Returns a graph of the statistically reliable relationships *that are not spurious*

• (tetrad)

Number of relationships found (out of 29)

Ν	# relationships P<0.01	Tetrad
100	66	19
1000	84	25
10,000	94	27
100,000	103	28

Tetrad consistent number of relationships (except small data sets)

Ν	<pre># relationships P<0.01</pre>	Tetrad		
100	66		19	
1000	84		25	
10,000	94		27	
100,000	103		28	

Ability to zoom in

- We care about more than statistically reliable effects
 - Correlation of -0.008 is reliable with 100,000 data points – but who cares? (show in SPSS)
- Would like to focus on relationships with high magnitude
 - (tweaked tetrad demo)

Data from Wayang outpost

- We (well, Dovan Rai :-))tried to write an EDM conference paper on it
 - Was a mess
 - Very complex graph
- (tetrad demo)

Feedback

• Wayang folks were impressed :-)

 Extension to Tetrad developed by Doug Selent for a class project in my Graphical Models course

Why I care about this topic

- See a goal of science of discovering causal relationships about some domain
 - Do not care about incidental correlations (e.g. foot size and spelling scores)
- Which paper would you rather read?

Problem grows with bigger data sets

 More columns → many more effects to test and "discover"

– Grows with $(C^2 - C) / 2$

- More rows → smaller and smaller effects can be detected
 - But doesn't make them any more meaningful!
- Concern about EDM being bogged down

More data \rightarrow find more relationships

• Even if the strength of the relationship is marginal (height and IQ correlate at about 0.2)

Correlation	P-value
-0.16	0.11
-0.19	0.0000000041
-0.13	3.9 * 10 ⁻³⁹
-0.13	≈0
	-0.16 -0.19 -0.13

Software

- Tetrad: available at <u>http://www.phil.cmu.edu/projects/tetrad/</u>
 - Free!
 - Google tetrad causal
- Modified Tetrad: email me (josephbeck@wpi.edu)
 - Experimental (not wrapped into main distribution)
 - Doug Selent's class project

software

- \$P\$\$
- PSPP (freeware version of SPSS)

- SAS (\$)
- R (freeware version of SAS)
 - Command line

Run a study

• Collect data on 100 students

- Run a correlation analysis to find related variables
 - Using correlation as common language, but many many ways to test a lot of relationships (e.g. ANOVA with interaction terms)