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ABSTRACT 

In recent years, machine-learning software packages have made it 

easier for educational data mining researchers to create real-time 

detectors of cognitive skill as well as of metacognitive and 

motivational behavior that can be used to improve student 

learning. However, there remain challenges to overcome for these 

methods to become available to the wider educational research 

and practice communities, including developing the labels that 

support supervised learning, distilling relevant and appropriate 

data features, and setting up appropriate cross-validation and 

configuration algorithms. We discuss the development of an 

Educational Data Mining (EDM) Workbench designed to address 

these challenges. 
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1. INTRODUCTION 

In recent years, educational data mining methods have afforded 

the development of detectors of a range of constructs of 

educational importance, from gaming the system [5] to off-task 

behavior [3] to motivation [8] to collaboration and argumentation 

moves [11]. The development of these detectors has been 

supported by the availability of machine learning packages such 

as RapidMiner [12], WEKA [15], and KEEL [1]. These packages 

provide large numbers of algorithms of general use, reducing the 

need for implementing algorithms locally, however they do not 

provide algorithms specialized for educational data mining, such 

as the widely used Bayesian Knowledge-Tracing [7]. 

Furthermore, effective use of these packages by the educational 

research and practice communities presumes that key steps in the 

educational data mining process have already been completed. For 

example, many of these detectors have been developed using 

supervised learning methods, which require that labeled instances, 

indicative of the categories of interest, be provided. Typically, 

many labeled instances – on the order of hundreds, if not 

thousands – are required to create a reliable behavior detector. 

Labeling data is a time consuming and laborious task, made even 

more difficult by the lack of tools available to support it.  

A second challenge is the engineering and distillation of relevant 

and appropriate data features for use in detector development [15]. 

The data that is directly available from log files typically lacks 

key information needed for optimal machine-learned models. For 

instance, the gaming detectors of both [5] and [14] rely upon 

assessments of how much faster or slower a specific action is than 

the average across all students on a problem step, as well as 

assessments of the probability that the student knew the cognitive 

skills used in the current problem step. This information can be 

distilled and/or calculated by processing data across an entire log 

file corpus, but there are currently no standard tools to accomplish 

this. Feature distillation is time-consuming, and many times a 

research group re-uses the same feature set and feature distillation 

software across several projects (the second author, for instance, 

has been using variants of the same feature set within Cognitive 

Tutors for nine years). Developing appropriate features can be a 

major challenge to new entrants in this research area. To address 

this “data labeling bottleneck” and the difficulty in distilling 

relevant features for machine learning, we are working to develop 

an Educational Data Mining (EDM) Workbench. A beta version 

of this Workbench, now available online at 

http://penoy.admu.edu.ph/~alls/downloads, is described in this 

paper. The workbench currently allows learning scientists to  

1) label previously collected educational log data with 

behavior categories of interest (e.g. gaming the system, 

help avoidance), considerably faster than is possible 

through previous live observation or existing data 

labeling methods.  

2) collaborate with others in labeling data.  

3) automatically distill additional information from log 

files for use in machine learning, such as estimates of 

student knowledge and context about student response 

time (i.e. how much faster or slower was the student’s 

action than the average for that problem step).  

Through the use of this tool, we hope that the process of 

developing a detector of relevant metacognitive, motivational, 

engagement, or collaborative behaviors can eventually be sped up. 

Just the use of “text replays”, on previously collected log data has 

been shown to speed a key phase of detector development by 

about 40 times, with no reduction in detector goodness [5].  

2. EDM WORKBENCH 

Version 1.0 of the EDM Workbench interfaces with some of the 

tools discussed in Section 1, filling some of the functional gaps 

that, without the Workbench, require manual intervention or 

require hand-coding of custom tools and cumbersome and 

complex actions by the user in packages such as Excel. Version 

1.0 of the Workbench has five functionalities: Log import, feature 



 

distillation, data sampling, data clipping and labeling, and data 

export. We discuss each of these functions in turn. 

2.1 Log import  

The EDM Workbench allows users to import logs in DataShop 

text format [9] and CSV. The data is assumed to be stored in a flat 

file, organized in rows and columns. The first row of the import 

file is assumed to contain each column’s name. Each succeeding 

row represents one logged transaction, usually between the 

student and tutor but possibly between two or more students as in 

the case of collaborative learning scenarios. If the user specifies 

that the imported data is in DataShop text format, the Workbench 

will check whether the table contains the columns it requires to 

distill 26 pre-defined features (discussed in 2.2). The successfully-

imported logs may be saved in the Workbench’s format for work 

files—a compressed file containing the data in CSV format plus 

metadata specific to the EDM Workbench.  

The Workbench can also import nested folders of data, where 

each folder level represents a meaningful subset of the data. For 

example, if data from a section of students is collected several 

times over a school year, the researcher may have one folder for 

the school year, one subfolder for each section within the school 

year, one subfolder for a session within each section, and finally 

one file or folder for each student within a session. The 

Workbench allows users to label each level of subfolder, creating 

new columns for these labels, appending them to the data tables 

during importation process. 

2.2 Feature distillation 

Assuming the necessary columns exist in the imported file, the 

Workbench can automatically distill 26 features from the data. 

The Workbench also has capacity for defining new features for 

future analyses. The 26 features distilled come from features used 

in past automated behavior detectors using DataShop data and 

related intelligent tutoring system data [2, 5, 13, 14]. The features 

include (but are not limited to) estimates of the student’s 

knowledge of the current skill [7]; the time the student spent on 

the problem (both in absolute and relative terms); and the types, 

number and proportion of correct, wrong, or help actions for the 

current skill for the last n steps, for the skill, or for the student. 

The current EDM Workbench uses 21 generic functions to 

compute the 26 automatically distilled features. Some functions 

correspond directly to a single feature while others are reusable, 

i.e. users can vary input parameters to compute for different 

features. Figure 1 is an excerpt of the EDM Workbench 

configuration file that specifies the features to be distilled and the 

functions used to distill them. It shows the specification of two 

features: timeSD and timelastnSD. These features have 

been used in several behavior detectors [2, 3].  

The first example in the excerpt is the specification for the feature 

timeSD, which makes use of a generic function also named 

timeSD. <group_col> refers to a sub-grouping criterion. In 

this case, the data is grouped by type of step, as specified in the 

Step Name column. The <range_col> is the column that 

contains the duration values that will be used to compute 

timeSD. Finally, <out> specifies the feature and output column 

name.  

The second example in the excerpt is the specification for 

timelastnSD. It uses the function sumLastN. 

<sort_col> refers to the column by which the data should be 

sorted before computing the feature. The two sets of 

<group_col>s imply that data sub-grouping in this case is 

based on two criteria, the Anon Student Id and the 

Problem Name. The <range_col> refers to the timeSD 

column, computed earlier. The <n> refers to the number of steps 

to be used in the computation. As with the first example, <out> 

specifies the feature and output column name.  

Figure 1. Excerpt from the EDM Workbench configuration 

file. 

<feature_set> 

 <timeSD> 

  <group_col>Step Name</group_col> 

  <range_col>Duration</range_col> 

  <out>timeSD</out> 

 </timeSD> 

 <sumLastN> 

  <sort_col>Row</sort_col> 

  <group_col>Anon Student Id</group_col> 

  <group_col>Problem Name</group_col> 

  <range_col>timeSD</range_col> 

  <n>3</n> 

  <out>timelastnSD</out> 

 </sumLastN> 

</feature_set> 

 

At the moment, adding new features for distillation requires some 

programming: If the feature can be computed by using one of the 

21 existing functions, the user can modify the EDM configuration 

file to define the new function and how it is derived.  If a feature 

requires a new function, the user can add the new function to the 

EDM Workbench’s source code, after which the new feature can 

be defined in the configuration file. It is our long-term objective to 

foster a user community that will eventually make new features 

available for others to use, similar to the open source software 

community, increasing the EDM Workbench’s usefulness to the 

broader research community. 

2.3 Clip generation 

In different projects, text replays have been implemented in 

several different ways [5, 10, 13]. Two of the key ways that text 

replays have differed has been in terms of the information and 

grain-size of the data presented to the coder. For coding, data is 

subdivided into smaller units, termed clips — subsets of student-

tutor transactions defined based on criteria for when they begin 

and end, and what information is included. For example, in 

various projects, clips have been defined as 20-second intervals 

[5], segments of 5 or 8 actions [10], and in terms of defined 

“begin” and “end” events in the learning software [13].  

The EDM Workbench allows the user to define the set of features 

by which the data should be grouped, so that clips do not contain 

rows from different groups. For example, if the data should be 

grouped by student, a single clip will contain data from only one 

student and not multiple students. The workbench also specifies 

the clip size, either by time or by number of transactions. 

Delineation of clips by beginning and ending events is not yet 

possible, but is a feature planned for future implementation. The 

Workbench then generates the clips for analysis, according to a 

sampling scheme discussed in the next section. 

Feature 
timeSD 

Feature 
timelastnSD 



 

2.4 Data sampling 

The data sampling feature of the Workbench allows the user to 

specify how clips are sampled from the data set. (It can also be 

used to sample at the action/transaction level). The user can 

specify the sample size, and whether the Workbench will 

randomly take the sample across the entire population or whether 

the workbench will stratify the sampling based on one or more 

variables.  

Note that the Workbench allows the user to sample the data at any 

point of the process — after importing, after clipping, or after 

labeling – depending on the user’s analytical goals.  

2.5 Labeling  
Once the sample has been taken, the user must then specify a 

subset of the clip columns that should be displayed in the text 

replay. It is possible that the user does not want all the clip 

columns displayed in the text replay. In the example shown in 

Figure 2, the user specified that only three columns will be 

displayed: COMPILE_SUCCESSFUL, MSG_MESSAGE and 

MSG_LINE_NUMBER. The user also specifies the labels that the 

observer or expert will use to characterize each clip. Figure 3 

(bottom) shows that expert or observer will have three labels to 

choose from: Confused, Not Confused or Bad Clip – the coding 

scheme from [10]. The circumstances under which an expert or 

observer labels a clip as “bad” changes depending on the data set, 

but typically indicate cases that should not be coded. For example, 

in the case of [10], a clip was labeled “bad” if the transactions 

contained instructor-supplied programming examples rather than 

programs that the students had written themselves. 

Figure 2. Specification of clip columns and labels. 

 

The Workbench then displays text replays of the clips together 

with the labeling options (Figure 3). A coder reads through the 

text replay and selects the label that best describes the clip. The 

labels are saved under a new column in the data set.  

Because a coder may have to label tens of thousands of clips [5], 

the coder may save his or her work and can continue the labeling 

process in a later session. 

2.6 Feature distillation and export 

Once data labeling is complete, the user can create clip-level data 

features to associate with the clips, facilitating later development 

of detectors. The user first selects the feature or column of 

interest. The user then specifies whether he/she would like the 

Workbench to compute for the minimum, maximum, average or 

standard deviation of that feature [13]. The Workbench will add 

the new column and corresponding computed value results to the 

clip dataset 

Figure 3. Text replay and label options. 

 

Finally, once processing is complete, the Workbench allows the 

user to save the logs in CSV format, for re-importation into an 

appropriate data mining tool, such as RapidMiner or WEKA. The 

user is then able to use that tool to build a detector of the construct 

they labeled, using the features they distilled.  

3. FUTURE WORK 
In this paper, we have presented the Educational Data Mining 

Workbench, a tool that researchers can use to facilitate the 

development of detectors of varying forms of student behavior. 

Version 1.0 of the Workbench supports two key steps of the 

detector development process that are relatively difficult and time-

consuming to do with existing tools: data labeling and feature 

distillation. By scaffolding users in conducting either or both of 

these steps, the tool may make it easier and quicker for a wider 

range of learning scientists and educational software developers to 

develop and use automated detectors of student behavior. 

It is worth noting that the current version of the Workbench is still 

limited. Each of the limitations discussed here are scheduled for 

implementation in the coming months. (1) The automatically-

distilled features are hard-coded; future releases will make it 

easier to alter the feature list. (2) The process of amending XML 

to create new features will be made more user-friendly. (3) The 

coders cannot change the way in which the text replays are 

displayed; future releases will support configuration of different 

ways to pretty print the text replays, towards highlighting the most 

important information for the coder’s specific current purpose. (4) 

Users can currently only sample data and assemble it into clips in 

a limited number of fashions; we intend to implement more 

sophisticated sampling and clip-creation strategies [13].  

A final direction for future work is to add support for researchers 

creating and validating models appropriately. Within the 

educational data mining community, there has emerged 

considerable know-how about how to set up tools such as 

RapidMiner to afford appropriate validation. (For example, 

batching data in order to support k-fold student-level cross-

validation, and then using a BatchXValidation operator in 

RapidMiner to implement it). We plan to add support for 

automatically creating appropriately stratified batches to realize 

several common cross-validation strategies, and automatically 

export RapidMiner code that is set up to read in the correct data 

and use appropriate cross-validation to build a detector of the 

construct that was labeled. 



 

Development of the EDM Workbench remains ongoing, and we 

look forward to collaborating with a range of EDM researchers 

and learning scientists in making this tool as useful as possible for 

the EDM community. We welcome comments and suggestions – 

as well as contributions – from any interested colleague. 
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