

Development of a Workbench to Address the Educational
Data Mining Bottleneck

Ma. Mercedes T. Rodrigo
Ateneo de Manila University
Loyola Heights, Quezon City,

Philippines

mrodrigo@ateneo.edu

Ryan S. J. d. Baker
Worcester Polytechnic Institute

Worcester, MA USA

rsbaker@wpi.edu

Bruce M. McLaren
Carnegie Mellon University

Pittsburgh, PA USA

bmclaren@cmu.edu

Alejandra Jayme

Ateneo de Manila University
Loyola Heights, Quezon City, Philippines

alejandra.jayme@gmail.com

Thomas T. Dy
Ateneo de Manila University

Loyola Heights, Quezon City, Philippines

thatsmydoing@gmail.com

ABSTRACT

In recent years, machine-learning software packages have made it

easier for educational data mining researchers to create real-time

detectors of cognitive skill as well as of metacognitive and

motivational behavior that can be used to improve student

learning. However, there remain challenges to overcome for these

methods to become available to the wider educational research

and practice communities, including developing the labels that

support supervised learning, distilling relevant and appropriate

data features, and setting up appropriate cross-validation and

configuration algorithms. We discuss the development of an

Educational Data Mining (EDM) Workbench designed to address

these challenges.

Keywords

Educational data mining workbench

1. INTRODUCTION

In recent years, educational data mining methods have afforded

the development of detectors of a range of constructs of

educational importance, from gaming the system [5] to off-task

behavior [3] to motivation [8] to collaboration and argumentation

moves [11]. The development of these detectors has been

supported by the availability of machine learning packages such

as RapidMiner [12], WEKA [15], and KEEL [1]. These packages

provide large numbers of algorithms of general use, reducing the

need for implementing algorithms locally, however they do not

provide algorithms specialized for educational data mining, such

as the widely used Bayesian Knowledge-Tracing [7].

Furthermore, effective use of these packages by the educational

research and practice communities presumes that key steps in the

educational data mining process have already been completed. For

example, many of these detectors have been developed using

supervised learning methods, which require that labeled instances,

indicative of the categories of interest, be provided. Typically,

many labeled instances – on the order of hundreds, if not

thousands – are required to create a reliable behavior detector.

Labeling data is a time consuming and laborious task, made even

more difficult by the lack of tools available to support it.

A second challenge is the engineering and distillation of relevant

and appropriate data features for use in detector development [15].

The data that is directly available from log files typically lacks

key information needed for optimal machine-learned models. For

instance, the gaming detectors of both [5] and [14] rely upon

assessments of how much faster or slower a specific action is than

the average across all students on a problem step, as well as

assessments of the probability that the student knew the cognitive

skills used in the current problem step. This information can be

distilled and/or calculated by processing data across an entire log

file corpus, but there are currently no standard tools to accomplish

this. Feature distillation is time-consuming, and many times a

research group re-uses the same feature set and feature distillation

software across several projects (the second author, for instance,

has been using variants of the same feature set within Cognitive

Tutors for nine years). Developing appropriate features can be a

major challenge to new entrants in this research area. To address

this “data labeling bottleneck” and the difficulty in distilling

relevant features for machine learning, we are working to develop

an Educational Data Mining (EDM) Workbench. A beta version

of this Workbench, now available online at

http://penoy.admu.edu.ph/~alls/downloads, is described in this

paper. The workbench currently allows learning scientists to

1) label previously collected educational log data with

behavior categories of interest (e.g. gaming the system,

help avoidance), considerably faster than is possible

through previous live observation or existing data

labeling methods.

2) collaborate with others in labeling data.

3) automatically distill additional information from log

files for use in machine learning, such as estimates of

student knowledge and context about student response

time (i.e. how much faster or slower was the student’s

action than the average for that problem step).

Through the use of this tool, we hope that the process of

developing a detector of relevant metacognitive, motivational,

engagement, or collaborative behaviors can eventually be sped up.

Just the use of “text replays”, on previously collected log data has

been shown to speed a key phase of detector development by

about 40 times, with no reduction in detector goodness [5].

2. EDM WORKBENCH

Version 1.0 of the EDM Workbench interfaces with some of the

tools discussed in Section 1, filling some of the functional gaps

that, without the Workbench, require manual intervention or

require hand-coding of custom tools and cumbersome and

complex actions by the user in packages such as Excel. Version

1.0 of the Workbench has five functionalities: Log import, feature

distillation, data sampling, data clipping and labeling, and data

export. We discuss each of these functions in turn.

2.1 Log import

The EDM Workbench allows users to import logs in DataShop

text format [9] and CSV. The data is assumed to be stored in a flat

file, organized in rows and columns. The first row of the import

file is assumed to contain each column’s name. Each succeeding

row represents one logged transaction, usually between the

student and tutor but possibly between two or more students as in

the case of collaborative learning scenarios. If the user specifies

that the imported data is in DataShop text format, the Workbench

will check whether the table contains the columns it requires to

distill 26 pre-defined features (discussed in 2.2). The successfully-

imported logs may be saved in the Workbench’s format for work

files—a compressed file containing the data in CSV format plus

metadata specific to the EDM Workbench.

The Workbench can also import nested folders of data, where

each folder level represents a meaningful subset of the data. For

example, if data from a section of students is collected several

times over a school year, the researcher may have one folder for

the school year, one subfolder for each section within the school

year, one subfolder for a session within each section, and finally

one file or folder for each student within a session. The

Workbench allows users to label each level of subfolder, creating

new columns for these labels, appending them to the data tables

during importation process.

2.2 Feature distillation

Assuming the necessary columns exist in the imported file, the

Workbench can automatically distill 26 features from the data.

The Workbench also has capacity for defining new features for

future analyses. The 26 features distilled come from features used

in past automated behavior detectors using DataShop data and

related intelligent tutoring system data [2, 5, 13, 14]. The features

include (but are not limited to) estimates of the student’s

knowledge of the current skill [7]; the time the student spent on

the problem (both in absolute and relative terms); and the types,

number and proportion of correct, wrong, or help actions for the

current skill for the last n steps, for the skill, or for the student.

The current EDM Workbench uses 21 generic functions to

compute the 26 automatically distilled features. Some functions

correspond directly to a single feature while others are reusable,

i.e. users can vary input parameters to compute for different

features. Figure 1 is an excerpt of the EDM Workbench

configuration file that specifies the features to be distilled and the

functions used to distill them. It shows the specification of two

features: timeSD and timelastnSD. These features have

been used in several behavior detectors [2, 3].

The first example in the excerpt is the specification for the feature

timeSD, which makes use of a generic function also named

timeSD. <group_col> refers to a sub-grouping criterion. In

this case, the data is grouped by type of step, as specified in the

Step Name column. The <range_col> is the column that

contains the duration values that will be used to compute

timeSD. Finally, <out> specifies the feature and output column

name.

The second example in the excerpt is the specification for

timelastnSD. It uses the function sumLastN.

<sort_col> refers to the column by which the data should be

sorted before computing the feature. The two sets of

<group_col>s imply that data sub-grouping in this case is

based on two criteria, the Anon Student Id and the

Problem Name. The <range_col> refers to the timeSD

column, computed earlier. The <n> refers to the number of steps

to be used in the computation. As with the first example, <out>

specifies the feature and output column name.

Figure 1. Excerpt from the EDM Workbench configuration

file.

<feature_set>

 <timeSD>

 <group_col>Step Name</group_col>

 <range_col>Duration</range_col>

 <out>timeSD</out>

 </timeSD>

 <sumLastN>

 <sort_col>Row</sort_col>

 <group_col>Anon Student Id</group_col>

 <group_col>Problem Name</group_col>

 <range_col>timeSD</range_col>

 <n>3</n>

 <out>timelastnSD</out>

 </sumLastN>

</feature_set>

At the moment, adding new features for distillation requires some

programming: If the feature can be computed by using one of the

21 existing functions, the user can modify the EDM configuration

file to define the new function and how it is derived. If a feature

requires a new function, the user can add the new function to the

EDM Workbench’s source code, after which the new feature can

be defined in the configuration file. It is our long-term objective to

foster a user community that will eventually make new features

available for others to use, similar to the open source software

community, increasing the EDM Workbench’s usefulness to the

broader research community.

2.3 Clip generation

In different projects, text replays have been implemented in

several different ways [5, 10, 13]. Two of the key ways that text

replays have differed has been in terms of the information and

grain-size of the data presented to the coder. For coding, data is

subdivided into smaller units, termed clips — subsets of student-

tutor transactions defined based on criteria for when they begin

and end, and what information is included. For example, in

various projects, clips have been defined as 20-second intervals

[5], segments of 5 or 8 actions [10], and in terms of defined

“begin” and “end” events in the learning software [13].

The EDM Workbench allows the user to define the set of features

by which the data should be grouped, so that clips do not contain

rows from different groups. For example, if the data should be

grouped by student, a single clip will contain data from only one

student and not multiple students. The workbench also specifies

the clip size, either by time or by number of transactions.

Delineation of clips by beginning and ending events is not yet

possible, but is a feature planned for future implementation. The

Workbench then generates the clips for analysis, according to a

sampling scheme discussed in the next section.

Feature
timeSD

Feature
timelastnSD

2.4 Data sampling

The data sampling feature of the Workbench allows the user to

specify how clips are sampled from the data set. (It can also be

used to sample at the action/transaction level). The user can

specify the sample size, and whether the Workbench will

randomly take the sample across the entire population or whether

the workbench will stratify the sampling based on one or more

variables.

Note that the Workbench allows the user to sample the data at any

point of the process — after importing, after clipping, or after

labeling – depending on the user’s analytical goals.

2.5 Labeling
Once the sample has been taken, the user must then specify a

subset of the clip columns that should be displayed in the text

replay. It is possible that the user does not want all the clip

columns displayed in the text replay. In the example shown in

Figure 2, the user specified that only three columns will be

displayed: COMPILE_SUCCESSFUL, MSG_MESSAGE and

MSG_LINE_NUMBER. The user also specifies the labels that the

observer or expert will use to characterize each clip. Figure 3

(bottom) shows that expert or observer will have three labels to

choose from: Confused, Not Confused or Bad Clip – the coding

scheme from [10]. The circumstances under which an expert or

observer labels a clip as “bad” changes depending on the data set,

but typically indicate cases that should not be coded. For example,

in the case of [10], a clip was labeled “bad” if the transactions

contained instructor-supplied programming examples rather than

programs that the students had written themselves.

Figure 2. Specification of clip columns and labels.

The Workbench then displays text replays of the clips together

with the labeling options (Figure 3). A coder reads through the

text replay and selects the label that best describes the clip. The

labels are saved under a new column in the data set.

Because a coder may have to label tens of thousands of clips [5],

the coder may save his or her work and can continue the labeling

process in a later session.

2.6 Feature distillation and export

Once data labeling is complete, the user can create clip-level data

features to associate with the clips, facilitating later development

of detectors. The user first selects the feature or column of

interest. The user then specifies whether he/she would like the

Workbench to compute for the minimum, maximum, average or

standard deviation of that feature [13]. The Workbench will add

the new column and corresponding computed value results to the

clip dataset

Figure 3. Text replay and label options.

Finally, once processing is complete, the Workbench allows the

user to save the logs in CSV format, for re-importation into an

appropriate data mining tool, such as RapidMiner or WEKA. The

user is then able to use that tool to build a detector of the construct

they labeled, using the features they distilled.

3. FUTURE WORK
In this paper, we have presented the Educational Data Mining

Workbench, a tool that researchers can use to facilitate the

development of detectors of varying forms of student behavior.

Version 1.0 of the Workbench supports two key steps of the

detector development process that are relatively difficult and time-

consuming to do with existing tools: data labeling and feature

distillation. By scaffolding users in conducting either or both of

these steps, the tool may make it easier and quicker for a wider

range of learning scientists and educational software developers to

develop and use automated detectors of student behavior.

It is worth noting that the current version of the Workbench is still

limited. Each of the limitations discussed here are scheduled for

implementation in the coming months. (1) The automatically-

distilled features are hard-coded; future releases will make it

easier to alter the feature list. (2) The process of amending XML

to create new features will be made more user-friendly. (3) The

coders cannot change the way in which the text replays are

displayed; future releases will support configuration of different

ways to pretty print the text replays, towards highlighting the most

important information for the coder’s specific current purpose. (4)

Users can currently only sample data and assemble it into clips in

a limited number of fashions; we intend to implement more

sophisticated sampling and clip-creation strategies [13].

A final direction for future work is to add support for researchers

creating and validating models appropriately. Within the

educational data mining community, there has emerged

considerable know-how about how to set up tools such as

RapidMiner to afford appropriate validation. (For example,

batching data in order to support k-fold student-level cross-

validation, and then using a BatchXValidation operator in

RapidMiner to implement it). We plan to add support for

automatically creating appropriately stratified batches to realize

several common cross-validation strategies, and automatically

export RapidMiner code that is set up to read in the correct data

and use appropriate cross-validation to build a detector of the

construct that was labeled.

Development of the EDM Workbench remains ongoing, and we

look forward to collaborating with a range of EDM researchers

and learning scientists in making this tool as useful as possible for

the EDM community. We welcome comments and suggestions –

as well as contributions – from any interested colleague.

4. ACKNOWLEDGMENTS

We thank Jessica Sugay, Alipio Gabriel, and John Paul Contillo.

We also thank John Stamper, Alida Skogsholm, and Ken

Koedinger for helpful comments and suggestions. This research

project was made possible through a grant from the Philippines

Department of Science and Technology’s Engineering Research

and Technology for Development program entitled “Development

of an Educational Data Mining Workbench.”

5. REFERENCES
[1] Alcala-Fdez, J., Sanchez, L., Garcia, S., de Jesus, M.J.,

Ventura, S., Garrell, J. M., Otero, J., Romero, C., Bacardit, J.

& Rivas, V.M. (2009). KEEL: A software tool to assess

evolutionary algorithms for data mining problems. Soft

Computing: A Fusion of Foundations, Methodologies and

Applications, 13(3), 307-318.

[2] Baker, R.S.J.d., Corbett, A.T., Aleven, V. (2008). More

Accurate Student Modeling Through Contextual Estimation

of Slip and Guess Probabilities in Bayesian Knowledge

Tracing. Proceedings of the 9th International Conference on

Intelligent Tutoring Systems, 406-415.

[3] Baker, R.S.J.d. (2007). Modeling and Understanding

Students' Off-Task Behavior in Intelligent Tutoring Systems.

Proceedings of ACM CHI 2007: Computer-Human

Interaction, 1059-1068.

[4] Baker, R.S.J.d., Corbett, A.T., Koedinger, K.R., & Wagner,

A.Z. (2004). Off-Task Behavior in the Cognitive Tutor

Classroom: When Students “Game the System.” Proceedings

of ACM CHI: Computer-Human Interaction383-390.

[5] Baker, R.S.J.d. & de Carvalho (2008). Labeling Student

Behavior Faster and More Precisely with Text Replays. 1st

International Conference on Educational Data Mining, 38-

47.

[6] Cetintas, S., Luo, S., Yan Ping Xin, & Hord, C. (2010).

Automatic detection of off-task behaviors in intelligent

tutoring systems with machine learning techniques. IEEE

Transactions on Leanring Technologies, 3(3), 228-236.

[7] Corbett, A.T., & Anderson, J.R. (1995). Knowledge Tracing:

Modeling the Acquisition of Procedural Knowledge. User

Modeling and User-Adapted Interaction, 4, 253-278.

[8] de Vicente, A., Pain, H. (2002). Informing the detection of

the students’ motivational state: an empirical study.

Proceedings of the 6th International Conference on

Intelligent Tutoring Systems, 933-943.

[9] Koedinger, K., Cunningham, K., Skogsholm, A., Leber, B.

(2011) An data repository for the EDM community: The

PSLC DataShop. In c. Romero, S. Ventura, M. Pechenizkiy

and R. S. J. d. Baker, Handbook of Educational Data Mining.

Boca Raton, FL: CRC Press, 43-55.

[10] Lee, D. M., Rodrigo, M. M. T. R., Baker, Ryan S. J. D.,

Sugay, J. O., & Coronel, A. (2011). Exploring the

relationship between novice programmer confusion and

achievement. In S. D’Mello & A Graesser (Eds.): ACII 2011,

Part I, LNCS 6974, (pp. 175-184), Berlin Heidelberg:

Springer-Verlag.

[11] McLaren, B.M., Scheuer, O., & Mikšátko, J.

(2010). Supporting collaborative learning and e-Discussions

using artificial intelligence techniques. International Journal

of Artificial Intelligence in Education (IJAIED) 20(1), 1-46.

[12] Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M. & Euler,

T. (2006). YALE: Rapid Prototyping for Complex Data

Mining Tasks. In Proc. of the 12th ACM SIGKDD Int’l

Conference on Knowledge Discovery and Data Mining

(KDD 2006), (pp. 935-940), ACM Press.

[13] Sao Pedro, M., Baker, R., Gobert, J., Montalvo, O., &

Nakama, A. (in press). Leveraging Machine-Learned

Detectors of Systematic Inquiry Behavior to Estimate and

Predict Transfer of Inquiry Skill. User Modeling and User-

Adapted Interaction.

[14] Walonoski, J. & Heffernan, N.T. (2006). Detection and

Analysis of Off-Task Gaming Behavior in Intelligent

Tutoring Systems. In Ikeda, Ashley & Chan (Eds.).

Proceedings of the 8th International Conference on

Intelligent Tutoring Systems. Springer-Verlag: Berlin. pp.

382-391.

[15] Witten, I. H. & Frank, E. (2005). Data Mining: Practical

Machine Learning Tools and Techniques, Second Edition,

Morgan Kaufmann.

